• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.035 seconds

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템)

  • Jung, Woojin;Park, Jinuk;Park, Yongju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1794-1799
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data.

An Efficient Collapsing Algorithm for Current-based Testing Models in CMOS VLSI (CMOS VLSI를 위한 전류 테스팅 기반 고장모델의 효율적인 중첩 알고리즘)

  • Kim Dae lk;Bae Sung Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1205-1214
    • /
    • 2004
  • For tile physical defects occurring in CMOS circuits which are not handled well by voltage-based testing, current testing is remarkable testing technique. Fault models based on defects must accurately describe the behaviour of the circuit containing the defect. In this paper, An efficient collapsing algorithm for fault models often used in current testing is proposed. Experimental results for ISCAS benchmark circuits show the effectiveness of the proposed method in reducing the number of faults that have to be considered by fault collapsing and its usefulness in various current based testing models.

A Method of Detecting the Aggressive Driving of Elderly Driver (노인 운전자의 공격적인 운전 상태 검출 기법)

  • Koh, Dong-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.537-542
    • /
    • 2017
  • Aggressive driving is a major cause of car accidents. Previous studies have mainly analyzed young driver's aggressive driving tendency, yet they were only done through pure clustering or classification technique of machine learning. However, since elderly people have different driving habits due to their fragile physical conditions, it is necessary to develop a new method such as enhancing the characteristics of driving data to properly analyze aggressive driving of elderly drivers. In this study, acceleration data collected from a smartphone of a driving vehicle is analyzed by a newly proposed ECA(Enhanced Clustering method for Acceleration data) technique, coupled with a conventional clustering technique (K-means Clustering, Expectation-maximization algorithm). ECA selects high-intensity data among the data of the cluster group detected through K-means and EM in all of the subjects' data and models the characteristic data through the scaled value. Using this method, the aggressive driving data of all youth and elderly experiment participants were collected, unlike the pure clustering method. We further found that the K-means clustering has higher detection efficiency than EM method. Also, the results of K-means clustering demonstrate that a young driver has a driving strength 1.29 times higher than that of an elderly driver. In conclusion, the proposed method of our research is able to detect aggressive driving maneuvers from data of the elderly having low operating intensity. The proposed method is able to construct a customized safe driving system for the elderly driver. In the future, it will be possible to detect abnormal driving conditions and to use the collected data for early warning to drivers.

Classification Model of Chronic Gastritis According to The Feature Extraction Method of Radial Artery Pulse Signal (맥파의 특징점 추출 방법에 따른 만성위염 판별 모형)

  • Choi, Sang-Ho;Shin, Ki-Young;Kim, Jeauk;Jin, Seung-Oh;Lee, Tea-Bum
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.185-194
    • /
    • 2014
  • One in every 10 persons suffer from chronic gastritis in Korea. Endoscopy is most commonly used to diagnose the chronic gastritis. Endoscopic diagnosis is precise but it is accompanied with pain and high cost. According to pulse diagnosis in Traditional East Asian Medicine, health problems in stomach can be diagnosed with radial pulse signals in 'Guan' location in the right wrist, which are non-invasive and cost-effective. In this study, we developed a classification model of chronic gastritis using pulse signals in right 'Guan' location. We used both linear discrimination method and logistic regression model with respect to pulse features obtained with a peak-valley detection algorithm and a Gaussian model. As a result, we obtained sensitivity ranged between 77%~89% and specificity ranged between 72%~83% depending on classification models and feature extraction methods, and the average classification rates were approximately 80%, irrespective of the models. Specifically, the Gaussian model were featured by superior sensitivities (89.1% and 87.5%) while the peak-valley detection method showed superior specificities (82.8% and 81.3%), and the average classification rate (sensitivity + specificity) of the Gaussian model was 80.9% which was 1.2% ahead of the peak-valley method. In conclusion, we obtained a reliable classification model for the chronic gastritis based on the radial pulse feature extraction algorithms, where the Gaussian model was featured by outperformed sensitivity and the peak-valley method was featured by outperformed specificity.

An Artificial Visual Attention Model based on Opponent Process Theory for Salient Region Segmentation (돌출영역 분할을 위한 대립과정이론 기반의 인공시각집중모델)

  • Jeong, Kiseon;Hong, Changpyo;Park, Dong Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.157-168
    • /
    • 2014
  • We propose an novel artificial visual attention model that is capable of automatic detection and segmentation of saliency region on natural images in this paper. The proposed model is based on human visual perceptions in biological vision and contains there are main contributions. Firstly, we propose a novel framework of artificial visual attention model based on the opponent process theory using intensity and color features, and an entropy filter is designed to perceive salient regions considering the amount of information from intensity and color feature channels. The entropy filter is able to detect and segment salient regions in high segmentation accuracy and precision. Lastly, we also propose an adaptive combination method to generate a final saliency map. This method estimates scores about intensity and color conspicuous maps from each perception model and combines the conspicuous maps with weight derived from scores. In evaluation of saliency map by ROC analysis, the AUC of proposed model as 0.9256 approximately improved 15% whereas the AUC of previous state-of-the-art models as 0.7824. And in evaluation of salient region segmentation, the F-beta of proposed model as 0.7325 approximately improved 22% whereas the F-beta of previous state-of-the-art models.

Robust Outlier-Object Detection in Image Pairs Based on Variable Threshold Using Empirical Correction Constant (실험적 교정상수를 사용한 가변문턱값에 기초한 영상 쌍에서의 강인한 이상 물체 검출)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • By calculating the differences between two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, a simple technique that reruns the regression, which is based on the polynomial regression model, is employed. For a robust detection of outliers, the image difference is normalized by the noise variance. Hence, an accurate estimate of the noise variance is very important. In this paper, using an empirically obtained correction constant is proposed. Numerical analysis using both synthetic and real images are also shown in this paper to show the robust performance of the detection algorithm.

A Real-time Audio Surveillance System Detecting and Localizing Dangerous Sounds for PTZ Camera Surveillance (PTZ 카메라 감시를 위한 실시간 위험 소리 검출 및 음원 방향 추정 소리 감시 시스템)

  • Nguyen, Viet Quoc;Kang, HoSeok;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1272-1280
    • /
    • 2013
  • In this paper, we propose an audio surveillance system which can detect and localize dangerous sounds in real-time. The location information about dangerous sounds can render a PTZ camera to be directed so as to catch a snapshot image about the dangerous sound source area and send it to clients instantly. The proposed audio surveillance system firstly detects foreground sounds based on adaptive Gaussian mixture background sound model, and classifies it into one of pre-trained classes of foreground dangerous sounds. For detected dangerous sounds, a sound source localization algorithm based on Dual delay-line algorithm is applied to localize the sound sources. Finally, the proposed system renders a PTZ camera to be oriented towards the dangerous sound source region, and take a snapshot against over the sound source region. Experiment results show that the proposed system can detect foreground dangerous sounds stably and classifies the detected foreground dangerous sounds into correct classes with a precision of 79% while the sound source localization can estimate orientation of the sound source with acceptably small error.

Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background (연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘)

  • Jung, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • Detection of moving objects is a fundamental task in most of the computer vision applications, such as video surveillance, activity recognition and human motion analysis. This is a difficult task due to many challenges in realistic scenarios which include irregular motion in background, illumination changes, objects cast shadows, changes in scene geometry and noise, etc. In this paper, we propose an foreground extraction algorithm based on codebook, a database of information about background pixel obtained from input image sequence. Initially, we suppose a first frame as a background image and calculate difference between next input image and it to detect moving objects. The resulting difference image may contain noises as well as pure moving objects. Second, we investigate a codebook with color and brightness of a foreground pixel in the difference image. If it is matched, it is decided as a fault detected pixel and deleted from foreground. Finally, a background image is updated to process next input frame iteratively. Some pixels are estimated by input image if they are detected as background pixels. The others are duplicated from the previous background image. We apply out algorithm to PETS2009 data and compare the results with those of GMM and standard codebook algorithms.

Abusive Detection Using Bidirectional Long Short-Term Memory Networks (양방향 장단기 메모리 신경망을 이용한 욕설 검출)

  • Na, In-Seop;Lee, Sin-Woo;Lee, Jae-Hak;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • Recently, the damage with social cost of malicious comments is increasing. In addition to the news of talent committing suicide through the effects of malicious comments. The damage to malicious comments including abusive language and slang is increasing and spreading in various type and forms throughout society. In this paper, we propose a technique for detecting abusive language using a bi-directional long short-term memory neural network model. We collected comments on the web through the web crawler and processed the stopwords on unused words such as English Alphabet or special characters. For the stopwords processed comments, the bidirectional long short-term memory neural network model considering the front word and back word of sentences was used to determine and detect abusive language. In order to use the bi-directional long short-term memory neural network, the detected comments were subjected to morphological analysis and vectorization, and each word was labeled with abusive language. Experimental results showed a performance of 88.79% for a total of 9,288 comments screened and collected.

  • PDF

Outlier-Object Detection Using an Image Pair Based on Regression Analysis: Noise Variance Estimation and Performance Analysis (영상 쌍에서 회귀분석에 기초한 이상 물체 검출: 잡음분산의 추정과 성능 분석)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.25-34
    • /
    • 2008
  • By comparing two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, an intensity compensation scheme, which is based on the polynomial regression model, is employed. For an accurate detection of outliers alleviating the influence from a set of outliers, a simple technique that reruns the regression is employed. In this paper, an algorithm that iteratively reruns the regression is theoretically analyzed by observing the convergence property of the estimates of the noise variance. Using a correction constant for the estimate of the noise variance is proposed. The correction enables the detection algorithm robust to the choice of thresholds for selecting outliers. Numerical analysis using both synthetic and Teal images are also shown in this paper to show the robust performance of the detection algorithm.