• Title/Summary/Keyword: 건물 열적 성능

Search Result 18, Processing Time 0.02 seconds

The Thermal Performance Comparison of BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 BIPVT 집열기 열적 실험성능 비교)

  • Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The temperature of PV modules that integrated into building facades or roof increases that could reduce the electrical efficiency of the PV system. In order to incresae PV system's efficiency it is very important to remove the heat from the PV modules. For this purpose, hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The solar collector utilizing this thermal effect is called photovoltaic-thermal(PVT) solar collector. This paper compares the experimental performance of building-integrated PVT collectors that applied on building roof and facade. There are two different case: a roof-integrated PVT type and a facade-integrated PVT type. The experimental results show that the collected thermal energy of the roof-integrated type was 24% higher, compared to that of the facade-integrated.

  • PDF

A Study on the Comparison of Thermal Comport Performance Indices for Cooling Loads in the Classroom (학교건물에서 냉방부하에 따른 열적 쾌적성 평가지표 비교 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1274-1279
    • /
    • 2004
  • We performed the numerical study on the comparison of thermal comport performance indices for cooling loads in the classroom when the 4-way cassette air-conditioner is mounted on the ceiling. We investigated the velocity and the temperature distribution of the classroom as with respect to the variation of the air diffusion angle of the air-conditioner. Air diffusion performance index and Predicted mean vote were used for analyzing the characteristics of the thermal comport in the classroom and comparing their values each other. From the numerical results, we knew that the thermal comport is largely affected by the air diffusion angle and velocity of the air-conditioner. And we also found out that the qualitative tendency of the distribution between Air diffusion performance index and Predicted mean vote is very similar in all occupied zone.

  • PDF

Evaluation of The Hygrothermal Performance by Wall Layer Component of Wooden Houses Using WUFI Simulation Program (WUFI 시뮬레이션 프로그램을 이용한 목조주택 벽체 레이어 구성에 따른 hygrothermal 성능 평가)

  • Kang, Yujin;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Thermal performance of wooden houses used by building materials effectively contributing to building energy saving has been improved. However, the performance was decreased to the condensation and mould growth from exterior wall because the moisture control was difficult to high insulation and airtightness. Therefore, the hygrothermal performance of exterior wall, that selected 5 types of wooden houses, evaluated using the hygrothermal simulation program: heat and moisture behavior, condensation and mould growth risk. Wooden houses were selected Rural houses standard plans '10 and '14, $2^{{\prime}{\prime}}{\times}6^{{\prime}{\prime}}$ type, EIFS and wood-based passive house. And the wall A, B, C, D and E were determined by layer component of each wall. The U-value of exterior wall are 0.171, 0.172, 0.221, 0.150, $0.079W/m^2K$. The OSB absolute water content of the wall A and C was exceeds the reference value of 20%, and it was confirmed that condensation occur at insulation material inner surface through the condensation evaluation in the winter. The wall D and E showed excellent results with condensation and water content evaluation compared to others. However, mould growth risk assessment in all five types of wall had have risk. We were determined that hygrothermal performance difference of exterior wall occur the difference in the layer structure rather than in thermal performance.

Review on the heat storage performance and air pollutant adsorption properties of gypsum board according to the additives (석고보드의 첨가제에 따른 오염물질 흡착 및 축열 성능에 대한 고찰)

  • Seo, Hyun Jeong;Jeong, Su-Gwang;Lim, Jae-Han;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Gypsum board is easy to manufacture of a variety of forms and has stable mechanical properties and thermal properties. And gypsum boards are widely used to the walls and ceiling of the building as the interior building materials. The studies about technology of applying the various features in the gypsum board with additives are being actively investigated. Development methods for enhancing performance of the gypsum board using additives are largely divided into two categories. The first case is functional gypsum board that is to improve the moisture absorption and moisture-proof properties. Also studies of adsorption and decomposition of indoor air pollutants of the gypsum board using porous materials as an additive are being actively investigated. Another case is applying thermal storage materials which gives the heat storage performance to gypsum board. In this paper, we would like to introduce the various cases of gypsum board applied various additives.

A Study on the Worst Stress Condition Test Evaluation of Blowers for Small Stationary Fuel Cell System (소용량 건물용 연료전지시스템 블로워의 가혹조건 평가에 관한 연구)

  • Kim, Kangsoo;Lee, Deokkwon;Lee, Jungwoon;Kim, Eunjung;Kim, Inchan;Kim, Younggyu;Shin, Hunyong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.34-40
    • /
    • 2012
  • The fuel cell is one of the renewable energy sources. And it is a new source of energy that can be applied to various fuels and continuously supported by the excellent city-gas infrastructure. It is important to improve performances and reliabilities, and reduce the cost of fuel cell systems for commercialization. And, some safety performances of blower domestically produced are evaluated and some improvements are researched to save the cost of fuel cell systems. In this paper, the performance and worst stress condition of blowers are evaluated in operating environment similar to the fuel cell systems. Actually, the correlation of flow, leakage and thermal behavior are evaluated in the worst stress condition at $70^{\circ}C$ and, some major factors of blower degradation such as a motor deterioration, material and structures of the outlet are examined.

Thermal Characteristics of Eire-Protection Aqueous Film Forming Foams for Various Expansion Ratios (소방용 수성막 폼의 비체적 변화에 따른 열적 특성 연구)

  • Kim Hong-Sik;Kim Youn-Jea;Hwang In-Ju
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In order to evaluate the performance of fire-protection foams used to protect structures from heat and fire damages, the thermal characteristics of them are experimentally investigated. This research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test apparatus for fire-protection foams subjected to fire radiation is developed. It involves a foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of 115℃~20℃. At this point, each trace generally rises to a temperature of approximately 90℃. The temperature gradient in the foam as time passes increases with increasing the foam expansion ratio. In addition, it is found that the temperature gradient along the foam for depth decreases with increasing the foam expansion ratio.

A Study on Generating Process of Regional Balance Point Temperature for Heating Degree-days in Korea (국내 난방도일의 지역별 균형점온도 산정 과정에 관한 연구)

  • Park, So Min;Song, Doo Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.482-495
    • /
    • 2017
  • Degree-days are practically used as a tool to estimate energy consumption for heating and cooling. Degree-days are calculated by summing differences of balance point temperature and outside temperature for the analyzed period. Determining balance point temperature is a key point in calculating accurate degree-days. However, ASHRAE standards are used for balance point temperature in Korea because balance point temperature considering climate conditions and building thermal performance is not proposed in Korea. This study proposes the process to generate balance point temperature for heating degree-days considering Korean climate and building conditions. Also, a new balance point temperature for three regions in Korea will be suggested in this study. Balance point temperature of Seoul is approximately $15.0^{\circ}C$, lower than the current standard of $18.3^{\circ}C$. Balance point temperature of Seoul considering climate conditions and building performance can be different from the ASHRAE suggested value ($18.3^{\circ}C$). Results revealed the current standard for balance point temperature should be changed considering climate and building conditions in Korea.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.