• Title/Summary/Keyword: 개체인식

검색결과 449건 처리시간 0.027초

계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계 (Design of the 3D Object Recognition System with Hierarchical Feature Learning)

  • 김주희;김동하;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.13-20
    • /
    • 2016
  • 본 논문에서는 계층적 특징 학습을 이용하여 물체의 컬러 영상과 깊이 영상으로부터 해당 물체가 속한 범주와 개체, 그리고 다양한 속성들을 효과적으로 인식할 수 있는 시스템을 제안한다. 본 시스템의 전처리 단계에서는 물체의 깊이 영상을 물체의 모양 정보를 좀 더 효과적으로 표현할 수 있는 표면 법선 벡터 데이터로 변환하고, 특징 학습 단계에서는 물체의 컬러 영상과 표면 법선 벡터 데이터로부터 두 단계에 걸쳐 패치 단위 특징과 이미지 단위의 특징을 추출해낸다. 그리고 추출된 특징 벡터들과 SVM 학습 알고리즘을 이용하여 각기 독립적인 다수의 분류 모델들을 학습한다. 미국 워싱턴 대학의 RGB-D 물체 데이터 집합을 이용한 실험을 통해, 본 논문에서 제안하는 물체 인식 시스템의 높은 성능을 확인할 수 있었다.

의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters)

  • 임수종;임준호;이충희;김현기
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.773-780
    • /
    • 2016
  • 기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.

적응형 변형 인식부를 이용한 침입 탐지 학습알고리즘 (Intrusion Detection Learning Algorithm using Adaptive Anomaly Detector)

  • 심귀보;양재원;김용수;이세열
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.451-456
    • /
    • 2004
  • 징후 기반의 침입 탐지 시스템은 일정한 침입 탐지 규칙을 구성하여 라이브러리에 저장한 후 새로운 입력에 대해 규칙과 패턴 매칭을 하여 침입 여부를 판정한다. 그러나 징후(규칙)를 기반으로 하는 침입 탐지 시스템은 통상적으로 크게 2가지의 제약을 갖는다. 첫 번째는 침입에 대한 규칙을 구성하지 못할 경우 그에 따른 FN 오류(false negative error)가 발생할 수 있으며, 두 번째는 규칙의 다양성을 확보하기 위해서 많은 규칙을 구성하게 되었을 경우 그에 소요되는 자원의 규모가 커진다는 점이다. 이에 본 논문에서는 생체 면역 세포의 생성 과정인 부정 선택을 공학적으로 모델링하여 변형 인식부를 구성하고 이를 후보 개체군으로 하여 유전자 알고리즘을 이용해 진화시킴으로서 변이적인 침입에 대해 탐지 가능한 변형 인식부의 학습 알고리즘을 제안한다. 제안한 알고리즘은 컴퓨터 시뮬레이션을 통하여 그 유효성을 입증한다.

기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항 (Considerations for Applying Korean Natural Language Processing Technology in Records Management)

  • 김학래
    • 한국기록관리학회지
    • /
    • 제22권4호
    • /
    • pp.129-149
    • /
    • 2022
  • 기록물은 과거와 현재를 포함하는 시간적 특성, 특정 언어에 제한되지 않는 언어적 특성, 기록물이 갖고 있는 다양한 유형을 복합적으로 갖고 있다. 기록물의 생성, 보존, 활용에 이르는 생애주기에서 텍스트, 영상, 음성으로 구성된 데이터의 처리는 많은 노력과 비용을 수반한다. 기계번역, 문서요약, 개체명 인식, 이미지 인식 등 자연어 처리 분야의 주요 기술은 전자기록과 아날로그 형태의 디지털화에 광범위하게 적용할 수 있다. 특히, 딥러닝 기술이 적용된 한국어 자연어 처리 분야는 다양한 형식의 기록물을 인식하고, 기록관리 메타데이터를 생성하는데 효과적이다. 본 논문은 한국어 자연어 처리를 기술을 소개하고, 기록 관리 분야에서 자연어 처리 기술을 적용하기 위한 고려사항을 논의한다. 기계번역, 광학문자인식과 같은 자연어 처리 기술이 기록물의 디지털 변환에 적용되는 과정은 파이썬 환경에서 구현한 사례로 소개한다. 한편, 자연어 처리 기술의 활용을 위해 기록관리 분야에서 자연어 처리 기술을 적용하기 위한 환경적 요소와 기록물의 디지털화 지침을 개선하기 위한 방안을 제안한다.

컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식 (Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy)

  • 김태희;강승호
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.972-980
    • /
    • 2022
  • 영상을 이용한 기계학습 기반의 나비 종 인식 기술은 나비 종의 다양성 및 개체 수, 종의 서식 분포 등을 파악하는데 관련 분야 종사자의 많은 시간과 비용 감소의 효과를 가져온다. 나비 종 분류의 정확성과 시간 효율을 높이기 위해 기계학습 모델의 입력으로 사용되는 여러 가지 특징들이 연구되었다. 그중 엔트로피 개념을 이용한 가지 길이 유사성 엔트로피나 색채 강도 엔트로피 방법이 푸리에 변환이나 웨이블릿 등 다른 특징들에 비해 높은 정확성과 적은 학습 시간을 보여주었다. 본 논문은 나비의 컬러 영상에 대한 RGB 색채 강도 엔트로피를 이용한 특징 추출 알고리즘을 제안한다. 또한 제안한 특징 추출 방법과 대표적인 앙상블 모델들을 결합한 나비 인식 시스템을 개발하고 성능을 평가한다.

얼굴 분석과 유사도 비교를 이용한 사용자 인증 시스템 (A User Authentication System Using Face Analysis and Similarity Comparison)

  • 류동엽;임영환;윤선희;서정민;이창훈;이근수;이상문
    • 한국멀티미디어학회논문지
    • /
    • 제8권11호
    • /
    • pp.1439-1448
    • /
    • 2005
  • 본 논문에서는 입력된 영상에서 색상 정보와 얼굴에서 주요한 특징정보의 기하 위치 분석과 추출 객체의 유사도 비교를 이용해서 얼굴 영역을 검출한 후 비율정보와 유사도를 이용해 사용자 인증을 하는 방법에 대해서 기술한다. 색상 정보를 이용한 얼굴 추출 알고리즘은 얼굴의 기울어진 정도나 크기 등에 영향을 받지 않는 장점을 가지고 있으므로 형태정보를 이용한 얼굴 추출 알고리즘에 비해 비교우위를 가진다. 하지만 색상 정보를 기반으로 하기 때문에 조명의 변화나, 피부색과 유사한 배경 등 색상에 대해 민감해서 정확한 성능을 유지하기 어렵다. 따라서 색상 정보 이외에 얼굴의 주요 특징 요소인 눈과 입술 등의 특징 정보를 검출하고 각 객체에 대한 유사도 비교를 수행함으로서 색상 정보를 이용한 방법에 비해 더 효율적으로 사용될 수 있다. 본 논문에서는 얼굴을 각각의 개체단위로 분할한 후 각 개체의 비율적인 특징을 계산하고 특정 계산식에 가중치를 부여하며 분할된 눈과 입의 유사도 검색을 통해 유사성을 확인함으로써 사용자를 인식하는 시스템을 제안한다. 제안한 방법을 실험하고 그 결과의 분석을 통해 인식률이 높아짐을 알 수 있었다.

  • PDF

CRISPR/Cas9 System을 활용한 배스의 불임 유도에 대한 연구 (A Study on the Induction of Infertility of Largemouth Bass (Micropterus salmoides) by CRISPR/Cas9 System)

  • 박승철;김종현;이윤정
    • 한국환경생태학회지
    • /
    • 제35권5호
    • /
    • pp.503-524
    • /
    • 2021
  • 배스(Micropterus salmoides)는 수생태계에서 최상위단계에 위치하는 생태계교란 어종으로 심각한 담수생태계의 불균형을 초래하고 있다. 배스의 퇴치 및 관리를 위한 다양한 시도를 하고 있지만 효과적인 방안은 없는 상황이므로 배스의 고유한 특성에 기반한 개체군 감소의 효율성을 극대화할 수 있는 방식을 모색하였다. 본 연구에서는 배스의 Transcriptom 분석으로 Unigene contigs는 182,887개, 그리고 정자-난자 인식 단백질인 IZUMO1과 Zona pellucida sperm-binding protein의 유전자에서 CRISPR/Cas9 system을 적용할 최종 Target sequence는 12종을 산출하였다. 각 Target sequence를 인식할 수 있는 12종의 sgRNA를 합성한 후 후속 연구에 사용할 12종의 Cas9-sgRNA ribonucleoprotein (RNP) complex를 제작하였다. 본 연구에서는 차세대염기서열 분석법으로 정자-난자 인식 단백질을 암호화하는 유전자를 탐색하였고, CRISPR/Cas9 system으로 유전자를 편집하여 번식행동은 하지만 수정란을 형성하지 못하는 생식세포를 생산하는 불임개체를 유도하기 위한 조성물 개발 과정을 확립하였다. 그리고 배스와 동일한 수계에 있는 고유 생물종의 서식에는 영향을 미치지 않는 생태교란종 관리 방안으로서의 유용성을 검증하기 위한 후속 연구의 귀중한 기초 자료를 확보하는데 기여했다고 판단된다.

새로운 반려견 등록방식 도입을 위한 안면 인식 성능 개선 연구 (A Study on Improving Facial Recognition Performance to Introduce a New Dog Registration Method)

  • 이동수;박구만
    • 방송공학회논문지
    • /
    • 제27권5호
    • /
    • pp.794-807
    • /
    • 2022
  • 동물보호법 개정에 따라 반려견 등록이 의무화 되었음에도 불구하고, 현재 등록 방법의 불편함으로 등록율이 저조한 상태이다. 본 논문에서는 새로운 등록 방법으로 검토되고 있는 반려견 안면 인식 기술에 대한 성능 개선 연구를 진행하였다. 딥러닝 학습을 통해, 반려견의 안면 인식을 위한 임베딩 벡터를 생성하여 반려견 개체별로 식별하기 위한 방법을 실험하였다. 딥러닝 학습을 위한 반려견 이미지 데이터셋을 구축하고, InceptionNet과 ResNet-50을 백본 네트워크로 사용하여 실험하였다. 삼중항 손실 방법으로 학습하였으며, 안면 검증과 안면 식별로 나뉘어 실험하였다. ResNet-50 기반의 모델에서 최고 93.46%의 안면 검증 성능을 얻을 수 있었으며, 안면 식별 시험에서는 rank-5에서 91.44%의 최고 성능을 각각 얻을 수 있었다. 본 논문에서 제시한 실험 방법과 결과는 반려견의 등록 여부 확인, 반려견 출입시설에서의 개체 확인 등 다양한 분야로 활용이 가능하다.

패턴 부트스트랩핑을 이용한 특허 문헌에서의 시맨틱 트리플 추출 (Extracting Semantic Triples from Patent Documents Using Pattern Bootstrapping)

  • 정창후;전홍우;최윤수;송사광;최성필;조민희;정한민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.281-282
    • /
    • 2012
  • 문서에 존재하는 중요한 개체를 인식하고 그것들 간의 관계를 식별하는 시맨틱 트리플 추출은 문헌 분석의 기반이 되는 중요한 작업이다. 본 논문에서는 특허 문헌에서 이러한 시맨틱 트리플을 추출하는 방법에 대해서 설명한다. 특허 문헌의 효과적인 자동 분석을 위하여 문장 내의 다양한 구문적 변형을 인식하여 하나의 정규화된 의미 형태로 표현해주는 술어-논항 구조 기반의 패턴을 사용하였고, 패턴의 자동화된 확장을 위하여 부트스트랩핑 방법을 적용하였다. 이러한 방법은 소규모의 시드 데이터를 활용하여 특정의미 관계를 갖는 패턴을 자동으로 확장하고 최종적으로는 유의미한 트리플을 추출하는 방법으로 다량의 이진 관계 집합을 처리해야 할 때 아주 유용한 방법이다. 시스템 적용을 통하여 특허 문헌에 적합한 38개의 연관관계 집합을 생성하였고, 32,608개의 유의미한 트리플을 추출하였다.

  • PDF

시간적 관계정보를 활용한 멀티태스크 심층신경망 모델 학습 기법 (Multi-task Learning Approach for Deep Neural Networks Using Temporal Relations)

  • 임채균;오교중;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.211-214
    • /
    • 2021
  • 다수의 태스크를 처리 가능하면서 일반화된 성능을 제공할 수 있는 모델을 구축하는 자연어 이해 분야의 연구에서는 멀티태스크 학습 기법에 대한 연구가 다양하게 시도되고 있다. 또한, 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. NLU 분야의 태스크를 더욱 정확하게 수행하려면 모델 내부적으로 시간정보를 반영할 필요가 있으며, 멀티태스크 학습 과정에서 추가적인 태스크로 시간적 관계정보를 추출하여 활용 가능하다. 본 논문에서는, 한국어 입력문장의 시간적 맥락정보를 활용할 수 있도록 NLU 태스크들의 학습 과정에서 시간관계 추출 태스크를 추가한 멀티태스크 학습 기법을 제안한다. 멀티태스크 학습의 특징을 활용하기 위해서 시간적 관계정보를 추출하는 태스크를 설계하고 기존의 NLU 태스크와 조합하여 학습하도록 모델을 구성한다. 실험에서는 학습 태스크들을 다양하게 조합하여 성능 차이를 분석하며, 기존의 NLU 태스크만 사용했을 경우에 비해 추가된 시간적 관계정보가 어떤 영향을 미치는지 확인한다. 실험결과를 통하여 전반적으로 멀티태스크 조합의 성능이 개별 태스크의 성능보다 높은 경향을 확인하며, 특히 개체명 인식에서 시간관계가 반영될 경우에 크게 성능이 향상되는 결과를 볼 수 있다.

  • PDF