References
- Cho, Heeryon, Yi, Yumi, Im, Hyeonyeol, Cha, Junwoo & Lee, Chankyu (2021). Automatic Score Range Classification of Korean Essays Using Deep Learning-based Korean Language Models -The Case of KoBERT & KoGPT2-. International Network For Korean Language And Culture, 18(1), 217-241. http://dx.doi.org/10.15652/ink.2021.18.1.217
- Choi, Yongseok & Lee, Kongjoo (2020). Performance Analysis of Korean Morphological Analyzer based on Transformer and BERT. Journal of KIISE(JOK), 47(8), 730-741. http://doi.org/10.5626/JOK.2020.47.8.730
- Digitization Guidelines for Records. NAK 26:2018(v2.0)
- Enforcement Decree of The Public Records Management Act. Presidential Decree No. 32772.
- Guideline for Digitalization of Records - Part 1: Papers, Photographs and Films Version 1.0. NAK/G8-1:2013(v1.0).
- Guideline for Records Cataloging and Digitalization Project Version 1.2. NAK 23:2017(v1.2).
- Hwang, Sangheum & Kim, Dohyun (2020). BERT-based classification model for Korean documents. The Journal of Society for e-Business Studies, 25(1), 203-214. http://doi.org/10.7838/jsebs.2020.25.1.203
- Information and documentation - Records management - Part 1: Concepts and principles. KS X ISO15489-1.
- Kang, Hyungsuc & Yang, Janghoon (2019). Optimization of Word2vec Models for Korean Word Embeddings. Journal of Digital Contents Society, 20(4), 825-833. http://doi.org/10.9728/dcs.2019.20.4.825
- Kang, Jihong (2021). Establishment of OCR Dataset for Records and Research on Improvement of Korean Handwriting Recognition (11-1741050-000078-01). National Archives of Korea.
- Kang, Mingyun (2021). A Study on the Standard Model for University Records Management Using Big Data and Artificial Intelligence Technology (11-1741050-000079-01). National Archives of Korea.
- Kim, Haklae (2022). A Study on Recycled Electronic Library Search Service Model Using Machine Learning Technology, National Assembly Library.
- Kim, Inhoo & Kim, Sunghee (2022). Automatic Classification of Academic Articles Using BERT Model Based on Deep Learning, Journal of the Korean Society for Information Management, 39(3), 293-310. http://doi.org/10.3743/KOSIM.2022.39.3.293
- Kim, Intaek, An, Daejin & Rieh, Haeyoung (2017). Intelligent Records and Archives Management That Applies Artificial Intelligence. Journal of Korean Society of Archives and Records Management, 17(4), 225-250. https://doi.org/10.14404/JKSARM.2017.17.4.225
- Kim, Sangwoon & Shin, Wonchul (2021). GPT-2 for Knowledge Graph Completion. Journal of KIISE(JOK), 48(12), 1281-1288. http://doi.org/10.5626/JOK.2021.48.12.1281
- Kim, Taeyoung, Gang, Juyeon, Kim, Geon & Oh, Hyojung (2018). A Study on the Current Status and Application Strategies for Intelligent Archival Information Services. Journal of Korean Society of Archives and Records Management, 18(4), 149-182. http://doi.org/10.14404/JKSARM.2018.18.4.149
- Kim, Youngmin, Lim, Seungyoung, Lee, Hyunjeong, Park, Soyoon & Kim, Myungji (2020). KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension. Journal of KIISE(JOK), 47(6), 577-586. http://doi.org/10.5626/JOK.2020.47.6.577
- Kim, HaeChansol, An, Daejin, Yim, Jinhee & Rieh, Haeyoung (2017). A Study on Automatic Classification of Record Text Using Machine Learning. Journal of the Korean Society for Information Management 34(4), 321-344. https://doi.org/10.3743/KOSIM.2017.34.4.321
- Metadata Standard for Records and Archives Management Version 2.1. NAK/S 8:2016(v2.1)
- Min, Jinwoo, Na, Seunghoon, Kim, Hyunho, Kim, Seonhoon & Kang, Inho (2022). LUKE for Korean Natural Language Processing: Named Entity Recognition and Entity Linking. KIISE Transactions on Computing Practices (KTCP), 28(3), 175-183. http://doi.org/10.5626/KTCP.2022.28.3.175
- Oh, Hyojung (2019). Intelligent Electronic Records Management Development Planning (11-1741050-000033-01). National Archives of Korea.
- Oh, Hyojung (2021). Study on Common Training Dataset Construction for Applying AI Technology for Records Management (11-1741050-000073-01). National Archives of Korea.
- Park, Eunjeong & Cho, Sungjun (2014). KoNLPy: Korean natural language processing in Python. Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology, 2014, 133-136.
- Park, Jinho (2019). The Role of Domain Knowledge in Deep Learning-Based Natural Language Processing. Journal of AI Humanities(JAIH), 4, 135-166. http://doi.org/10.46397/JAIH.4.7
- Park, Sangun (2021). Analysis of the Status of Natural Language Processing Technology Based on Deep Learning. The Korea Journal of BigData, 6(1), 63-81. http://doi.org/10.36498/kbigdt.2021.6.1.63
- Ryu, Hanjo (2021). A Study on the Status Analysis and Improvement of Local Government Record Management Reference Table Using Big Data Analysis Technology (11-1741050-000075-01), National Archives of Korea.
- Yoo, Soyeop & Jeong, Okran (2019). An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph. The Journal of Society for e-Business Studies, 24(3), 87-98. http://doi.org/10.7838/jsebs.2019.24.3.087
- Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T. & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.
- Arefieva, V. & Egger, R. (2022). TourBERT: A pretrained language model for the tourism industry. arXiv preprint arXiv:2201.07449.
- Badrinarayanan, V., Kendall, A. & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
- Beltagy, I., Lo, K. & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
- Bengio, Y., Lecun, Y. & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58-65. https://doi.org/10.1145/3448250
- Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5, 135-146. https://doi.org/10.1162/tacl_a_00051
- Camacho-Collados, J. & Pilehvar, M. T. (2020). Embeddings in natural language processing. Proceedings of the 28th international conference on computational linguistics: tutorial abstracts, 10-15.
- Ding, J. & Chen, J. (2020). Assessment of Empirical Troposphere Model GPT3 Based on NGL's Global Troposphere Products. Sensors, 20(13), 3631. https://doi.org/10.3390/s20133631
- Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M. & Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66.
- Ethayarajh, K. (2019). How contextual are contextualized word representations? comparing the geometry of BERT, ELMo, and GPT-2 embeddings. arXiv preprint arXiv:1909.00512. https://doi.org/10.1016/j.ijinfomgt.2022.102542
- Floridi, L. & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681-694. https://doi.org/10.1007/s11023-020-09548-1
- Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H. & Gonzalez-Rodriguez, J. (2014). Automatic language identification using long short-term memory recurrent neural networks. Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), 2155-2159.
- Kaplan, J. (2016). Artificial Intelligence: What Everyone Needs to Know. 신동숙 옮김 (2017). 제리 카플란 인공지능의 미래 : 상생과 공존을 위한 통찰과 해법들. 한즈미디어.
- LeCun, Y. & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10),
- Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H. & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240. https://doi.org/10.1093/bioinformatics/btz682
- Lee, S., Jang, H., Baik, Y., Park, S. & Shin, H. (2020). KR-BERT: A Small-Scale Korean-Specific Language Model. CoRR, arXiv:2008.03979. https://doi.org/10.48550/arXiv.2008.03979
- Locke, S., Bashall, A., Al-Adely, S., Moore, J., Wilson, A., & Kitchen, G. B. (2021). Natural language processing in medicine: a review. Trends in Anaesthesia and Critical Care, 38, 4-9. https://doi.org/10.1016/j.tacc.2021.02.007
- McCarthy, J., Minsky, M. L., Rochester, N. & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence. AI magazine, 27(4), 12-12. https://doi.org/10.1609/aimag.v27i4.1904
- Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.
- Nadkarni, P. M., Ohno-Machado, L. & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), 544-551. https://doi.org/10.1136/amiajnl-2011-000464
- Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing(EMNLP), 1532-1543.
- Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. & Zettlemoyer, L. (2018). Deep contextualized word representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 2227-2237
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2018). Language Models are Unsupervised Multitask Learners. Technical report, OpenAi.
- Ranjan, N., Mundada, K., Phaltane, K., & Ahmad, S. (2016). A Survey on Techniques in NLP. International Journal of Computer Applications, 134(8), 6-9.
- Rogers, A., Kovaleva, O. & Rumshisky, A. (2020). A Primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842-866. https://doi.org/10.1162/tacl_a_00349
- Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386-408. https://doi.org/10.1037/h0042519
- Singh, P., Rutten, G. & Lefever, E. (2021). A pilot study for BERT language modelling and morphological analysis for ancient and medieval Greek. Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021), 128-137.
- Sutskever, I., Martens, J. & Hinton, G. E. (2011). Generating text with recurrent neural networks. Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11), 1017-1024.
- Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T. & Qin, B. (2014). Learning sentiment-specific word embedding for twitter sentiment classification. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1, 1555-1565. https://doi.org/10.3115/v1/P14-1146
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), 6000-6010.
- Von Ahn, L., Maurer, B., McMillen, C., Abraham, D. & Blum, M. (2008). recaptcha: Human-based character recognition via web security measures. Science, 321(5895), 1465-1468. https://doi.org/10.1126/science.1160379
- Wang, H. & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800.
- Weikum, G. (2002). Foundations of statistical natural language processing. ACM SIGMOD Record, 31(3), 37-38. https://doi.org/10.1145/601858.601867
- Weiss, K., Khoshgoftaar, T. M. & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 1-40. https://doi.org/10.1186/s40537-016-0043-6
- Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A. & Rush, A. M. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 38-45.
- Yang, Y., Uy, M. C. S. & Huang, A. (2020). Finbert: A pretrained language model for financial communications. arXiv preprint arXiv:2006.08097.