DOI QR코드

DOI QR Code

Considerations for Applying Korean Natural Language Processing Technology in Records Management

기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항

  • 김학래 (중앙대학교 사회과학대학 문헌정보학과)
  • Received : 2022.10.21
  • Accepted : 2022.11.25
  • Published : 2022.11.30

Abstract

Records have temporal characteristics, including the past and present; linguistic characteristics not limited to a specific language; and various types categorized in a complex way. Processing records such as text, video, and audio in the life cycle of records' creation, preservation, and utilization entails exhaustive effort and cost. Primary natural language processing (NLP) technologies, such as machine translation, document summarization, named-entity recognition, and image recognition, can be widely applied to electronic records and analog digitization. In particular, Korean deep learning-based NLP technologies effectively recognize various record types and generate record management metadata. This paper provides an overview of Korean NLP technologies and discusses considerations for applying NLP technology in records management. The process of using NLP technologies, such as machine translation and optical character recognition for digital conversion of records, is introduced as an example implemented in the Python environment. In contrast, a plan to improve environmental factors and record digitization guidelines for applying NLP technology in the records management field is proposed for utilizing NLP technology.

기록물은 과거와 현재를 포함하는 시간적 특성, 특정 언어에 제한되지 않는 언어적 특성, 기록물이 갖고 있는 다양한 유형을 복합적으로 갖고 있다. 기록물의 생성, 보존, 활용에 이르는 생애주기에서 텍스트, 영상, 음성으로 구성된 데이터의 처리는 많은 노력과 비용을 수반한다. 기계번역, 문서요약, 개체명 인식, 이미지 인식 등 자연어 처리 분야의 주요 기술은 전자기록과 아날로그 형태의 디지털화에 광범위하게 적용할 수 있다. 특히, 딥러닝 기술이 적용된 한국어 자연어 처리 분야는 다양한 형식의 기록물을 인식하고, 기록관리 메타데이터를 생성하는데 효과적이다. 본 논문은 한국어 자연어 처리를 기술을 소개하고, 기록 관리 분야에서 자연어 처리 기술을 적용하기 위한 고려사항을 논의한다. 기계번역, 광학문자인식과 같은 자연어 처리 기술이 기록물의 디지털 변환에 적용되는 과정은 파이썬 환경에서 구현한 사례로 소개한다. 한편, 자연어 처리 기술의 활용을 위해 기록관리 분야에서 자연어 처리 기술을 적용하기 위한 환경적 요소와 기록물의 디지털화 지침을 개선하기 위한 방안을 제안한다.

Keywords

References

  1. Cho, Heeryon, Yi, Yumi, Im, Hyeonyeol, Cha, Junwoo & Lee, Chankyu (2021). Automatic Score Range Classification of Korean Essays Using Deep Learning-based Korean Language Models -The Case of KoBERT & KoGPT2-. International Network For Korean Language And Culture, 18(1), 217-241. http://dx.doi.org/10.15652/ink.2021.18.1.217
  2. Choi, Yongseok & Lee, Kongjoo (2020). Performance Analysis of Korean Morphological Analyzer based on Transformer and BERT. Journal of KIISE(JOK), 47(8), 730-741. http://doi.org/10.5626/JOK.2020.47.8.730
  3. Digitization Guidelines for Records. NAK 26:2018(v2.0)
  4. Enforcement Decree of The Public Records Management Act. Presidential Decree No. 32772.
  5. Guideline for Digitalization of Records - Part 1: Papers, Photographs and Films Version 1.0. NAK/G8-1:2013(v1.0).
  6. Guideline for Records Cataloging and Digitalization Project Version 1.2. NAK 23:2017(v1.2).
  7. Hwang, Sangheum & Kim, Dohyun (2020). BERT-based classification model for Korean documents. The Journal of Society for e-Business Studies, 25(1), 203-214. http://doi.org/10.7838/jsebs.2020.25.1.203
  8. Information and documentation - Records management - Part 1: Concepts and principles. KS X ISO15489-1.
  9. Kang, Hyungsuc & Yang, Janghoon (2019). Optimization of Word2vec Models for Korean Word Embeddings. Journal of Digital Contents Society, 20(4), 825-833. http://doi.org/10.9728/dcs.2019.20.4.825
  10. Kang, Jihong (2021). Establishment of OCR Dataset for Records and Research on Improvement of Korean Handwriting Recognition (11-1741050-000078-01). National Archives of Korea.
  11. Kang, Mingyun (2021). A Study on the Standard Model for University Records Management Using Big Data and Artificial Intelligence Technology (11-1741050-000079-01). National Archives of Korea.
  12. Kim, Haklae (2022). A Study on Recycled Electronic Library Search Service Model Using Machine Learning Technology, National Assembly Library.
  13. Kim, Inhoo & Kim, Sunghee (2022). Automatic Classification of Academic Articles Using BERT Model Based on Deep Learning, Journal of the Korean Society for Information Management, 39(3), 293-310. http://doi.org/10.3743/KOSIM.2022.39.3.293
  14. Kim, Intaek, An, Daejin & Rieh, Haeyoung (2017). Intelligent Records and Archives Management That Applies Artificial Intelligence. Journal of Korean Society of Archives and Records Management, 17(4), 225-250. https://doi.org/10.14404/JKSARM.2017.17.4.225
  15. Kim, Sangwoon & Shin, Wonchul (2021). GPT-2 for Knowledge Graph Completion. Journal of KIISE(JOK), 48(12), 1281-1288. http://doi.org/10.5626/JOK.2021.48.12.1281
  16. Kim, Taeyoung, Gang, Juyeon, Kim, Geon & Oh, Hyojung (2018). A Study on the Current Status and Application Strategies for Intelligent Archival Information Services. Journal of Korean Society of Archives and Records Management, 18(4), 149-182. http://doi.org/10.14404/JKSARM.2018.18.4.149
  17. Kim, Youngmin, Lim, Seungyoung, Lee, Hyunjeong, Park, Soyoon & Kim, Myungji (2020). KorQuAD 2.0: Korean QA Dataset for Web Document Machine Comprehension. Journal of KIISE(JOK), 47(6), 577-586. http://doi.org/10.5626/JOK.2020.47.6.577
  18. Kim, HaeChansol, An, Daejin, Yim, Jinhee & Rieh, Haeyoung (2017). A Study on Automatic Classification of Record Text Using Machine Learning. Journal of the Korean Society for Information Management 34(4), 321-344. https://doi.org/10.3743/KOSIM.2017.34.4.321
  19. Metadata Standard for Records and Archives Management Version 2.1. NAK/S 8:2016(v2.1)
  20. Min, Jinwoo, Na, Seunghoon, Kim, Hyunho, Kim, Seonhoon & Kang, Inho (2022). LUKE for Korean Natural Language Processing: Named Entity Recognition and Entity Linking. KIISE Transactions on Computing Practices (KTCP), 28(3), 175-183. http://doi.org/10.5626/KTCP.2022.28.3.175
  21. Oh, Hyojung (2019). Intelligent Electronic Records Management Development Planning (11-1741050-000033-01). National Archives of Korea.
  22. Oh, Hyojung (2021). Study on Common Training Dataset Construction for Applying AI Technology for Records Management (11-1741050-000073-01). National Archives of Korea.
  23. Park, Eunjeong & Cho, Sungjun (2014). KoNLPy: Korean natural language processing in Python. Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology, 2014, 133-136.
  24. Park, Jinho (2019). The Role of Domain Knowledge in Deep Learning-Based Natural Language Processing. Journal of AI Humanities(JAIH), 4, 135-166. http://doi.org/10.46397/JAIH.4.7
  25. Park, Sangun (2021). Analysis of the Status of Natural Language Processing Technology Based on Deep Learning. The Korea Journal of BigData, 6(1), 63-81. http://doi.org/10.36498/kbigdt.2021.6.1.63
  26. Ryu, Hanjo (2021). A Study on the Status Analysis and Improvement of Local Government Record Management Reference Table Using Big Data Analysis Technology (11-1741050-000075-01), National Archives of Korea.
  27. Yoo, Soyeop & Jeong, Okran (2019). An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph. The Journal of Society for e-Business Studies, 24(3), 87-98. http://doi.org/10.7838/jsebs.2019.24.3.087
  28. Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T. & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323.
  29. Arefieva, V. & Egger, R. (2022). TourBERT: A pretrained language model for the tourism industry. arXiv preprint arXiv:2201.07449.
  30. Badrinarayanan, V., Kendall, A. & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495. https://doi.org/10.1109/TPAMI.2016.2644615
  31. Beltagy, I., Lo, K. & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
  32. Bengio, Y., Lecun, Y. & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58-65. https://doi.org/10.1145/3448250
  33. Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5, 135-146. https://doi.org/10.1162/tacl_a_00051
  34. Camacho-Collados, J. & Pilehvar, M. T. (2020). Embeddings in natural language processing. Proceedings of the 28th international conference on computational linguistics: tutorial abstracts, 10-15.
  35. Ding, J. & Chen, J. (2020). Assessment of Empirical Troposphere Model GPT3 Based on NGL's Global Troposphere Products. Sensors, 20(13), 3631. https://doi.org/10.3390/s20133631
  36. Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M. & Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 66.
  37. Ethayarajh, K. (2019). How contextual are contextualized word representations? comparing the geometry of BERT, ELMo, and GPT-2 embeddings. arXiv preprint arXiv:1909.00512. https://doi.org/10.1016/j.ijinfomgt.2022.102542
  38. Floridi, L. & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681-694. https://doi.org/10.1007/s11023-020-09548-1
  39. Gonzalez-Dominguez, J., Lopez-Moreno, I., Sak, H. & Gonzalez-Rodriguez, J. (2014). Automatic language identification using long short-term memory recurrent neural networks. Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), 2155-2159.
  40. Kaplan, J. (2016). Artificial Intelligence: What Everyone Needs to Know. 신동숙 옮김 (2017). 제리 카플란 인공지능의 미래 : 상생과 공존을 위한 통찰과 해법들. 한즈미디어.
  41. LeCun, Y. & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10),
  42. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H. & Kang, J. (2020). BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234-1240. https://doi.org/10.1093/bioinformatics/btz682
  43. Lee, S., Jang, H., Baik, Y., Park, S. & Shin, H. (2020). KR-BERT: A Small-Scale Korean-Specific Language Model. CoRR, arXiv:2008.03979. https://doi.org/10.48550/arXiv.2008.03979
  44. Locke, S., Bashall, A., Al-Adely, S., Moore, J., Wilson, A., & Kitchen, G. B. (2021). Natural language processing in medicine: a review. Trends in Anaesthesia and Critical Care, 38, 4-9. https://doi.org/10.1016/j.tacc.2021.02.007
  45. McCarthy, J., Minsky, M. L., Rochester, N. & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence. AI magazine, 27(4), 12-12. https://doi.org/10.1609/aimag.v27i4.1904
  46. Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word representations in vector space. In 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.
  47. Nadkarni, P. M., Ohno-Machado, L. & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), 544-551. https://doi.org/10.1136/amiajnl-2011-000464
  48. Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing(EMNLP), 1532-1543.
  49. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. & Zettlemoyer, L. (2018). Deep contextualized word representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 2227-2237
  50. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2018). Language Models are Unsupervised Multitask Learners. Technical report, OpenAi.
  51. Ranjan, N., Mundada, K., Phaltane, K., & Ahmad, S. (2016). A Survey on Techniques in NLP. International Journal of Computer Applications, 134(8), 6-9.
  52. Rogers, A., Kovaleva, O. & Rumshisky, A. (2020). A Primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842-866. https://doi.org/10.1162/tacl_a_00349
  53. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386-408. https://doi.org/10.1037/h0042519
  54. Singh, P., Rutten, G. & Lefever, E. (2021). A pilot study for BERT language modelling and morphological analysis for ancient and medieval Greek. Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2021), 128-137.
  55. Sutskever, I., Martens, J. & Hinton, G. E. (2011). Generating text with recurrent neural networks. Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML'11), 1017-1024.
  56. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T. & Qin, B. (2014). Learning sentiment-specific word embedding for twitter sentiment classification. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1, 1555-1565. https://doi.org/10.3115/v1/P14-1146
  57. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), 6000-6010.
  58. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D. & Blum, M. (2008). recaptcha: Human-based character recognition via web security measures. Science, 321(5895), 1465-1468. https://doi.org/10.1126/science.1160379
  59. Wang, H. & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800.
  60. Weikum, G. (2002). Foundations of statistical natural language processing. ACM SIGMOD Record, 31(3), 37-38. https://doi.org/10.1145/601858.601867
  61. Weiss, K., Khoshgoftaar, T. M. & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 1-40. https://doi.org/10.1186/s40537-016-0043-6
  62. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A. & Rush, A. M. (2020). Transformers: State-of-the-art natural language processing. Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 38-45.
  63. Yang, Y., Uy, M. C. S. & Huang, A. (2020). Finbert: A pretrained language model for financial communications. arXiv preprint arXiv:2006.08097.