• Title/Summary/Keyword: 강제배기

Search Result 24, Processing Time 0.023 seconds

A Study on Cooling of Piezoelectric Element of Multifunction Equipment for Vacuum Exhaust and Ultrasonic Joining (진공 배기 및 초음파 접합 복합기 진동자 냉각에 관한 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1511-1517
    • /
    • 2012
  • Vacuum chamber or vacuum tube for the exhaust process of vacuum glazing is presently used, where excessive time and expenses are required to make the whole vacuum chamber or tube vacuum. To solve this problem, multifunction equipment for vacuum exhaust and ultrasonic joining at atmospheric pressure has been developed, in which a piezoelectric vibrator experiences excessive temperature rise resulting in optimizing the cooling of the equipment. Therefore, in this study, cooling effects of natural convection and forced convection methods were identified by numerical analysis and experiments, and cooling performance of the multifunction equipment was optimized.

Study on the Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층공동주택 국소배기용 입상덕트의 배기성능평가에 관한 연구)

  • Kwon, Yong-il;Lee, Tae-Kyu;Ahn, Jung-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.889-894
    • /
    • 2008
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

  • PDF

Characteristics of Cooling Effect Depending on Operation of Forced Ventilation Systems in a Single-span Plastic Greenhouse (강제환기장치 사용에 따른 단동 플라스틱 온실 기온 강하 특성)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Kwon, Jin-Kyung;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • This study was carried out to investigate quantitative characteristics of the cooling effect in a single-span arch greenhouse with roll-up side vents depending on operation of circulation and exhaust fans during ventilation, in order to suggest a practical strategy regarding installation or operation of forced ventilation systems. The examination was conducted under 3 different ventilation conditions (side vents only, side vents + circulation fans, and side vents + circulation fans + exhaust fans). In each condition, variations of internal and external air temperatures and exogenous environmental factors were recorded during ventilation, and the cooling effects were investigated by comparing the normalized temperature difference (NTD) of each ventilation condition. In the morning time (11:00-12:00), a temporary peak in the temperature difference was observed at the beginning of ventilation regardless of ventilation methods. The time taken to the maximum NTD was decreased from 340 s to 110s, and the NTD was dropped from 1.158 to 1.037 as the more forced ventilation systems were operated. The more operations caused the passing time over specific NTD values reduced by 60% as the time was reduced from 1,030 s to 550 s at NTD = 0.8, 1,610 s to 915 s at NTD = 0.6, and 2,315 s to 1,360 s at NTD = 0.4. The temporary peak in NTD was not observed in the afternoon time (14:00-15:00) but it was dropped as quickly as the ventilation started. Also the more operations resulted in the passing time over specific NTD values reduced by 70% as the time was reduced from 560 s to 345 s at NTD = 0.8, from 825 s to 540 s at NTD = 0.6, and from 1,145 s to 810 s at NTD = 0.4. Conclusively, the intervention of the forced ventilation system is recommended in the morning time or in high thermal conditions to achieve more effective and economical ventilation.

EFFECTS OF PLACEMENT OF A TORUS PLATE COVER ON AIR FLOW IN A SPINNER EQUIPMENT (원환형 덮개장착이 스피너 장비의 기류에 미치는 영향)

  • Kwak H.S.;Yang J.O.;Lee S.W.;Park S.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.52-58
    • /
    • 2006
  • A numerical investigation is made of air flow in a spinner equipment used for cleanning and drying flat display panels. A unique feature of the spinner under question is the placement of a torus plate cover over the rotating plate. The turbulent flow is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber. The flow is modelled as an axisymmetric two-dimensional flow and computation is conducted by using the FLUENT package with a version of k-$\varepsilon$ turbulence model. The required capacity of the exhaust system is assessed numerically. The usefulness of the cover in controlling air flow circulation is examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiment.

Computational Analysis of Air Flow in a Spinner for Drying LCD Glass Panel (LCD 기판 세정건조용 스피너 설계를 위한 내부유동 해석)

  • Kwak Ho Sang;Lee Sang Woo;Lee Sanghyun;Kim Yong Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.114-119
    • /
    • 2002
  • A numerical model is employed for design of a spinner device to dry the 5-th generation LCD glass panel. The turbulent flow in a spinner is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber, which is simulated by using the FLUENT package. Based on numerical simulation, the required capacity of exhaust system is assessed. The effects of the presence of cover on the flow characteristics are examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiments.

  • PDF

Underground hot water heating system development using exhaust gas heat in the hot air heater (온풍난방기의 배기열을 이용한 지중난방용 온수시스템 개발)

  • 김영중;이건중;신정웅;유영선;장진택
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.100-103
    • /
    • 1999
  • 온풍난방은 우리 나라 대부분의 온실난방지역에서 가장 많이 채택하고 있는 온실난방방법으로 간주되고 있다. 온풍난방은 기본적으로 화석연료를 연소열로 변환시켜 온실난방에 사용하는 방법으로 온수난방, 태양열난방 보다 열효율이 높다. 가장 보편적 온실난방열원으로는 경유나 보일러등유를 연소실에서 연소하여 열교환기를 거친 후 온풍기의 상부에 부착되어 있는 송풍팬으로 강제적으로 온실 내로 온풍을 불어넣는다. (중략)

  • PDF

저온기 육용계사의 적정 환기체계 구명

  • 이덕수;나재천;최희철;송준익;이상진;김형호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.108-109
    • /
    • 2002
  • The study was carried out to iind out the suitable ventilation system of the broiler house in winter season in Korea. Ammonia (NH$_3$-N) gas concentration (4.2ppm) of the system of pipe air inlet-forced chimney outlet was lower than that of the system of side wall inlet. The growth performance of broilers in the house equiped with pipe air inlet-chimney exhaust was higher than that of other ventilation systmes in which the average daily gain, feed efficiency and heat cost per head in the system of pipe air inlet-forced chimney excretion were 45.6g, 1.71 and 35.4 won per head, respectively. When the lengths of pipe air inlets were compared, the wind speed from the 4 meter-inlet was highest. The temperature of the broiler house equipped with the pipe air inlet system was higher (5.9 ∼ 7.7$^{\circ}C$) than that of the curtains in side wall Inlet system, in which the pipe air inlet system expects the lower heat cost.

  • PDF

Experimental Study on Ventilation Efficiency of Leakage Gas Based on Supply and Exhaust Vent Location (밀폐공간에서 급·배기구 위치에 따른 누출 가스의 환기효과에 관한 실험적 연구)

  • Ha-Young Kim;Seong-Min Lee;Byeol Kim;Kwang-Il Hwang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.274-283
    • /
    • 2024
  • Climate change is currently one of the most pressing environmental issues, primarily caused by carbon emissions from fossil fuel usage. As a result, alternative fuels that effectively reduce carbon emissions are garnering more attention. Among these alternatives, hydrogen has numerous advantages, such as its ability for large-scale storage and transport. However, it is crucial to prioritize safety measures, particularly in facilities that handle hydrogen, due to its highly flammable and fast-spreading nature. This study aims to compare and analyze the placement of supply and exhaust vents to efficiently release hydrogen in the event of a leak in an enclosed space. The experiments involved six different scenarios, each with various combinations of supply and exhaust vents. To ensure the experimental process's safety, helium, which shares similar physical properties with hydrogen, was used to analyze the internal oxygen concentration during ventilation system operations. The results revealed that among the six scenarios, Case 2, which employed a lower side supply vent and an upper side exhaust vent, exhibited the shortest ventilation time of 4 minutes and 30 seconds. Additionally, the decrease rate in oxygen concentration was examined in the upper, middle, and lower areas. Ventilation utilizing an upper surface supply vent and two exhaust vents on the upper surface and upper side (Case 6), showed lower oxygen concentration values in the upper area, while Case 2 yielded lower values in the middle and lower areas. Therefore, it is crucial to select an appropriate supply and exhaust vent configuration considering the space's characteristics and usage environment.

A Study on the Performance of Ondol with a Ventilation System (환기시스템을 갖춘 온돌 성능에 관한 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4047-4051
    • /
    • 2014
  • Modern apartment houses are constructed to be relatively airtight with a high heat insulation system to increase the energy efficiency. Such a system has a range of deleterious effects due to the insufficient ventilation. In this study, the ondol system, which is used as a heat source typical of winter in Korea, was set as the default system to evaluate the indoor heat environment according to the ventilation method, the factors of energy reduction by the ventilation system was analyzed. The experimental apparatus was used to simulate the ambient conditions for a certain constant temperature and humidity chamber. The experimental results showed that the supply water temperature higher air volume decreases with increasing supply air temperature in the following order: floor supply/exhaust > total heat exchange supply/exhaust > forced supply/exhaust. Through this study, the applicability of various ventilations could be examined.

A Study on the Design and Development of Gas Burner for Gas Furnace (가스온풍기용 가스버너의 설계 및 개발에 관한 연구)

  • 박용호;염만오;심성훈;엄기훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of this study is to modify the kerosene furnace, which is forced flue type with 15000kcal capacity, to gas furnace satisfying for CITY gas, LNG gas and LPG gas. The gas furnace, a kind of gas appliance, is mainly used for heating houses by combusion of gas. This paper describes briefly the design technology for gas burner which is most important in replacing kerosene fuel with gas fuel. Especially, the design for gas nozzle is constructed by theoretical and experimental method. It is found that the experimental results of the modified gas burner are good agreement with the theoretical results for calorific value and combustion efficiency. The result of this study will contribute in the design skill and of gas burner and similar gas appliance, and the pursuit for reduction of fuel cost as well as atmospheric pollution.

  • PDF