DOI QR코드

DOI QR Code

Characteristics of Cooling Effect Depending on Operation of Forced Ventilation Systems in a Single-span Plastic Greenhouse

강제환기장치 사용에 따른 단동 플라스틱 온실 기온 강하 특성

  • Kim, Seong-Heon (Division of Energy & Environmental Engineering, Department of Agricultural Engineering National Institute of Agricultural Sciences) ;
  • Kim, Hyung-Kweon (Division of Energy & Environmental Engineering, Department of Agricultural Engineering National Institute of Agricultural Sciences) ;
  • Kwon, Jin-Kyung (Division of Energy & Environmental Engineering, Department of Agricultural Engineering National Institute of Agricultural Sciences) ;
  • Lee, Si-Young (Division of Energy & Environmental Engineering, Department of Agricultural Engineering National Institute of Agricultural Sciences)
  • 김성헌 (국립농업과학원 에너지환경공학과) ;
  • 김형권 (국립농업과학원 에너지환경공학과) ;
  • 권진경 (국립농업과학원 에너지환경공학과) ;
  • 이시영 (국립농업과학원 에너지환경공학과)
  • Received : 2022.04.13
  • Accepted : 2022.06.20
  • Published : 2022.07.31

Abstract

This study was carried out to investigate quantitative characteristics of the cooling effect in a single-span arch greenhouse with roll-up side vents depending on operation of circulation and exhaust fans during ventilation, in order to suggest a practical strategy regarding installation or operation of forced ventilation systems. The examination was conducted under 3 different ventilation conditions (side vents only, side vents + circulation fans, and side vents + circulation fans + exhaust fans). In each condition, variations of internal and external air temperatures and exogenous environmental factors were recorded during ventilation, and the cooling effects were investigated by comparing the normalized temperature difference (NTD) of each ventilation condition. In the morning time (11:00-12:00), a temporary peak in the temperature difference was observed at the beginning of ventilation regardless of ventilation methods. The time taken to the maximum NTD was decreased from 340 s to 110s, and the NTD was dropped from 1.158 to 1.037 as the more forced ventilation systems were operated. The more operations caused the passing time over specific NTD values reduced by 60% as the time was reduced from 1,030 s to 550 s at NTD = 0.8, 1,610 s to 915 s at NTD = 0.6, and 2,315 s to 1,360 s at NTD = 0.4. The temporary peak in NTD was not observed in the afternoon time (14:00-15:00) but it was dropped as quickly as the ventilation started. Also the more operations resulted in the passing time over specific NTD values reduced by 70% as the time was reduced from 560 s to 345 s at NTD = 0.8, from 825 s to 540 s at NTD = 0.6, and from 1,145 s to 810 s at NTD = 0.4. Conclusively, the intervention of the forced ventilation system is recommended in the morning time or in high thermal conditions to achieve more effective and economical ventilation.

본 연구는 권취식 측창을 갖는 아치형 단동 플라스틱 온실 내 강제환기장치 설치 및 운용, 환기 성능 개선방안 등을 제안하기 위해 온실 내부에 유동팬과 배기팬을 설치하여 강제환기장치 사용에 따른 온실 내부기온 강하 특성을 정량적으로 조사하였다. 시험은 3가지 환기 조건(측창, 측창+순환팬, 측창+순환팬+배기팬)에서 수행되었다. 각 조건 데이터로거를 이용하여 환기 시작과 동시에 온실 내외부 기온 및 외부환경 변화를 측정·기록하였고, 환기 방식별 기온차 변화의 평균값으로 부터 정규기온차를 계산하여 기온 강하 효과를 비교하였다. 오전(11:00-12:00)에는 환기 방식에 상관없이 환기 초반 정규기온차가 일시적으로 증가했다가 감소하는 것으로 나타났다. 강제환기장치가 더 많이 사용될수록 최대 정규기온차는 1.158에서 1.037로 감소하였고 최대 정규기온차에 도달하는 시간도 340초에서 110초로 단축되었다. 강제환기장치의 사용은 정규기온차가 0.8까지 감소하는데 소요된 시간을 1,030초에서 550초로, 0.6까지는 1,610초에서 915초로, 0.4까지는 2,315초에서 1,360초로, 자연환기의 약60% 수준으로 감소시켰다. 오후(14:00-15:00)에는 정규기온차의 증가가 관측되지 않았지만, 환기 시작과 동시에 기온차가 감소하기 시작했다. 또한 강제환기장치가 더 많이 사용될수록 정규기온차가 0.8까지 내려가는 시간을 560초에서 345초로, 0.6까지는 825초에서 540초로, 0.4까지는 560초에서 345초로, 약70% 수준으로 감소시켰다. 따라서, 보다 효과적이고 경제적인 환기를 위해 강제환기장치는 오전과 같이 열부하가 높은 환경에서 적극적으로 사용하는 것이 바람직하다고 판단된다.

Keywords

Acknowledgement

본 연구는 2021년도 농촌진흥청 국립농업과학원 연구개발사업(과제번호: PJ01425702)의 지원에 의해 이루어진 것임.

References

  1. American Society of Agricultural Engineers (ASAE) 2003, ASAE Standards: Heating, ventilating and cooling greenhouses. ASAE, St. Joseph, MI, USA, pp 699-707.
  2. Cho I.W., J.H. Ann, W.M. Lee, J.H. Moon, J.H. Lee, B.S. Choi, S.H. Son, E.Y. Choi, S.G. Lee, and Y.H. Woo 2010, Wilted symptom in watermelon plant under ventilation systems. Korean J Hortic Sci Technol 28:529-534. (in Korean)
  3. Fernandez J.E., and B.J. Bailey 1992, Measurement and prediction of greenhouse ventilation rates. Agric For Meteorol 58:229-245. doi:10.1016/0168-1923(92)90063-A
  4. Jo Y.H., C.H. Lee, and J.H. Yoo 2013, Study on applicability of passive infrared thermography analysis for blistering detection of stone cultural heritage. J Conserv Sci 29:55-67. (in Korean) doi:10.12654/JCS.2013.29.1.06
  5. Kim M.K., S.W. Nam, W.M. Seo, Y.C. Yoon, S.G. Lee, and H.W. Lee 2000, Agricultural structure engineering. Hyang-moonsa Publication, Seoul, Korea, pp 138-204. (in Korean)
  6. Kim M.S, S.H. Jung, J.G. Kim, H.S. Lee, and S.S. Kim 2021, A study on solar radiation forecasting based on long short-term memory considering hourly weather changes. J Korean Inst Intell Syst 31:88-94. (in Korean) doi:10.5391/JKIIS.2021.31.1.088
  7. Lee T.S., G.C. Kang, H.K. Kim, J.P. Moon, S.S. Oh, and J.K. Kwon 2017, Analysis of air temperature and humidity distributions and energy consumptions according to use of air circulation fans in a single-span greenhouse. Protected Hort Plant Fac 26:276-282. (in Korean) doi:10.12791/KSBEC.2017.26.4.276
  8. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Status of vegetable greenhouse and vegetable production in 2020. MAFRA, Sejong, Korea. (in Korean)
  9. Morgan L. 2021, Hydroponics and protected cultivation: a practical guide. CABI International. Wallingford, Oxfordshire, UK, pp 35-36.
  10. Nam S.W. 2001, Roof ventilation structures and ridge vent effect for single span greenhouse of arch shape. Korean J Agric Sci 28:99-107. (in Korean)
  11. Nam S.W., and Y.S. Kim 2009, Actual state of structures and environmental control facilities for tomato greenhouse in Chungnam region. Korean J Agric Sci 36:73-85. (in Korean)
  12. Nam S.W., Y.S. Kim, and A.J. Both 2011, Analysis on the ventilation performance of single-span tomato greenhouse with roof windows. J Bio-Env Con 20:78-82. (in Korean)
  13. Nam S.W., Y.S. Kim, G.H. Ko, and I.M. Sung 2012, Analysis of the installation criteria and ventilation effect for round roof windows in single-span plastic greenhouses. Korean J Agric Sci 39:271-277. (in Korean) https://doi.org/10.7744/CNUJAS.2012.39.2.271
  14. Son J.E., I.S. Kim, J.M. Choi, and J.H. Bae 2021, Greenhouse horticulture. Hyangmoonsa Publication, Seoul, Korea, pp 144-146. (in Korean)
  15. Wang W., T. Boulard, and R. Haxaire 2000, Measurement and analysis of air speed distribution in a naturally ventilated greenhouse. Acta Hortic 534:277-283. doi:10.17660/ActaHortic.2000.534.32
  16. Yeo K.H., I.H. Yu, G.L. Choi, S.C. Lee, J.H. Lee, K.S. Park, J.S. Lee, and K. Bekhzod 2016, Effect of modified installation methods of roof ventilation device in the single-span plastic greenhouse on yield and fruit quality of oriental melon. Protected Hort Plant Fac 25:334-342. (in Korean) doi:10.12791/KSBEC.2016.25.4.334
  17. Yoon J.O. 1992, On the prediction of the wind climate in Seoul based on probability distribution (Weibull Distribution). J Archit Inst Korea 8:145-151. (in Korean)