DOI QR코드

DOI QR Code

Experimental Study on Ventilation Efficiency of Leakage Gas Based on Supply and Exhaust Vent Location

밀폐공간에서 급·배기구 위치에 따른 누출 가스의 환기효과에 관한 실험적 연구

  • Ha-Young Kim (Dept of Refrigeration and Air Conditioning Engineering, National Korea Maritime & Ocean University) ;
  • Seong-Min Lee (Dept of Refrigeration and Air Conditioning Engineering, National Korea Maritime & Ocean University) ;
  • Byeol Kim (Department of the System Safety Research,Korea Shipbuilding & Offshore Engineering Co., Ltd.) ;
  • Kwang-Il Hwang (Division of Mechanical Engineering, National Korea Maritime & Ocean University)
  • 김하영 (국립한국해양대학교 냉동공조공학과 ) ;
  • 이성민 (국립한국해양대학교 냉동공조공학과 ) ;
  • 김별 (HD한국조선해양 미래기술연구원 시스템안전연구실 ) ;
  • 황광일 (국립한국해양대학교 기계공학부)
  • Received : 2024.06.10
  • Accepted : 2024.08.22
  • Published : 2024.08.31

Abstract

Climate change is currently one of the most pressing environmental issues, primarily caused by carbon emissions from fossil fuel usage. As a result, alternative fuels that effectively reduce carbon emissions are garnering more attention. Among these alternatives, hydrogen has numerous advantages, such as its ability for large-scale storage and transport. However, it is crucial to prioritize safety measures, particularly in facilities that handle hydrogen, due to its highly flammable and fast-spreading nature. This study aims to compare and analyze the placement of supply and exhaust vents to efficiently release hydrogen in the event of a leak in an enclosed space. The experiments involved six different scenarios, each with various combinations of supply and exhaust vents. To ensure the experimental process's safety, helium, which shares similar physical properties with hydrogen, was used to analyze the internal oxygen concentration during ventilation system operations. The results revealed that among the six scenarios, Case 2, which employed a lower side supply vent and an upper side exhaust vent, exhibited the shortest ventilation time of 4 minutes and 30 seconds. Additionally, the decrease rate in oxygen concentration was examined in the upper, middle, and lower areas. Ventilation utilizing an upper surface supply vent and two exhaust vents on the upper surface and upper side (Case 6), showed lower oxygen concentration values in the upper area, while Case 2 yielded lower values in the middle and lower areas. Therefore, it is crucial to select an appropriate supply and exhaust vent configuration considering the space's characteristics and usage environment.

기후변화는 가장 중요한 환경 문제 중 하나로, 이 변화의 주요 원인은 화석연료 사용으로 인한 탄소배출이다. 이에 대응하기 위해 다양한 대체 연료가 주목받고 있다. 이 중에서도 수소는 대용량 저장 및 대규모 운송 등 연료로서 많은 장점을 가지고 있지만 극인화성 기체이며 빠르게 확산되는 특성이 있어 수소를 다루는 시설에서는 환기를 통해 내부 안전을 확보하는 것이 필요하다. 본 연구는 밀폐공간에서 수소가 누출될 경우, 효율적으로 배출시킬 수 있는 급·배기구의 위치를 비교 및 분석하는 것을 목적으로 한다. 실험은 총 6가지의 급기구와 배기구 조합으로 시나리오를 구성하였다. 실험과정의 안전을 고려하여 수소 대신 물리적 성질이 유사한 헬륨을 사용하여 환기시스템이 작동 중일 때의 내부 산소농도를 분석하였다. 실험결과, 6가지 시나리오 중에서 하부측면의 급기구와 상부측면의 배기구를 활용한 환기(Case2)가 4분 30초로 가장 짧은 환기소요시간을 나타내었다. 더 나아가 상·중·하부 영역에 따른 산소농도감소율을 확인한 결과, 상부 영역에서는 상부면 급기구와 상부면·상부측면에 두 개의 배기구를 활용한 환기(Case6)가, 중부와 하부에서는 Case2가 낮은 값을 보였다.

Keywords

References

  1. Cha, H. S., Hur, K. B. and Song, S. H.(2015), "Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture", Journal of the Korean Institute of Gas, Vol. 19, No. 5, pp. 7-12. 
  2. Chen, M., Zhao, M., Huang, T., Ji, S., Chen, L., Chang, H., Christopher, DM. and Li, X.(2020), "Measurements of helium distributions in a scaled-down parking garage model for unintended releases from a fuel cell vehicle", International Journal of Hydrogen Energy, Vol. 45, No. 41, pp. 22166-22175. 
  3. Connett, J. E.(2014), Repeatability and reproducibility. Wiley StatsRef: Statistics Reference Online. 
  4. Dadashzadeh, M., Ahmad, A. and Khan, F.(2016), "Dispersion modelling and analysis of hydrogen fuel gas released in an enclosed area: A CFD-based approach", Fuel, Vol. 184, pp. 192-201. 
  5. Ekoto, I. W., Merilo, E. G., Dedrick, D. E. and Groethe, M. A.(2011), "Performance-based testing for hydrogen leakage into passenger vehicle compartments. International journal of hydrogen energy". Vol. 36, No. 16, pp. 10169-10178. 
  6. Ghatauray, T., Ingram, J. M. and Holborn, P. G.(2016), "An experimental and CFD study into the dispersion of buoyant gas using passive venting in a small fuel cell enclosure", In Institution of Chemical Engineers Symposium Series Vol. 2016, No. 161. 
  7. Huang, T., Zhao, M., Ba, Q., Christopher, D. M. and Li, X.(2022), "Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage", International Journal of Hydrogen Energy, Vol. 47, No. 1, pp. 686-696. 
  8. Hydrogen Convergence Alliance(2021), 'Hydrogen energy.Hydrogen economy 30 Questions 30 Answers'. 
  9. Korea Gas Technology Corporation(2020), 'Safe world, happy future, clean energy! Hydrogen'. 
  10. Korean Register(2022), Rules and Guidances for the Classification of Ships Using Low-flashpoint Fuels/ 
  11. Korea Occupational Safety and Health Agency(2019), MSDS, Hydrogen. https://msds.kosha.or.kr/MSDSInfo/kcic/msdsdetail.do 
  12. Korea Occupational Safety and Health Agency(2021), Technical guidance on establishing and implementing a confined space work program. 
  13. Lee, J. W., Cho, S. H., Cho, H. T., Cho, S. S., Lee, I. K., Moon, I. and Kim, J. H.(2022), "CFD modeling on natural and forced ventilation during hydrogen leaks in a pressure regulator process of a residential area", Process Safety and Environmental Protection, Vol. 161, pp. 436-446. 
  14. Li, Q., Zhang, J. Q., Li, J. M., Zhang, B. S. and Jiang, Y.(2018), "Combustion phenomena of pool fire in a ceiling vent compartment: the vent far away from the fire source", Procedia engineering, Vol. 211, pp. 388-394. 
  15. Matsuura, K., Kanayama, H., Tsukikawa, H. and Inoue, M.(2008), "Numerical simulation of leaking hydrogen dispersion behavior in a partially open space", International Journal of Hydrogen Energy, Vol. 33, No. 1, pp. 240-247. 
  16. Mihai, V. and Rusu, L.(2021), "An overview of the ship ventilation systems and measures to avoid the spread of diseases", Inventions, Vol. 6, No. 3, p. 55. 
  17. Ministry of Oceans and Fisheries(2023), Interim standards for hydrogen fuel cell facilities in ships. 
  18. Ministry of Trade, Industry and Energy(2019), "The First Hydrogen Economy Implementation Framework Plan". 
  19. Occupational Safety And Health Act, Annex 18. 
  20. Patel, P., Baalisampang, T., Arzaghi, E., Garaniya, V., Abbassi, R. and Salehi, F.(2023), "Computational analysis of the hydrogen dispersion in semi-confined spaces. Process Safety and Environmental Protection", Vol. 176, pp. 475-488. 
  21. Shu, Z., Liang, W., Liu, F., Lei, G., Zheng, X. and Qian, H.(2022), "Diffusion characteristics of liquid hydrogen spills in a crossflow field: Prediction model and experiment", Applied Energy, Vol. 323, p. 119617. 
  22. Sun, X., Yang, J., Wang, J., Chen, X. and Shi, J.(2023), "Analytical Model of Critical Ventilation Flow Rate for Accidental Hydrogen Leakage in a Confined Space", Energies, Vol. 16, No. 19, p. 6864. 
  23. Tarkowski, R.(2019), "Underground hydrogen storage: Characteristics and prospects", Renewable and Sustainable Energy Reviews, Vol. 105, pp. 86-94. 
  24. Park, W. I. and Tak, S. S., Lee, I. W. and Hong, S. P.(2021), "A Study on Hydrogen Energy Safety according to the Revitalization of the Hydrogen Economy" Journal of The Korean Institute of Gas, Vol. 25, No. 6, pp. 74-79. 
  25. Xin, J., Duan, Q., Jin, K. and Sun, J.(2023), "A reduced-scale experimental study of dispersion characteristics of hydrogen leakage in an underground parking garage.", International Journal of Hydrogen Energy, Vol. 48, No. 44, pp. 16936-16948. 
  26. 2050 CNC(2021), 2050 Carbon neutrality scenario. https://www.2050cnc.go.kr/base/contents/view?contentsNo=9&menuLevel=2&menuNo=11.