이러닝 시스템을 유용하게 활용하려면 학습자의 감정을 인식하여 학습자에게 적절한 피드백을 주는 것이 무엇보다 중요하다. 이러닝 시스템의 학습효율을 높이기 위해서는 학습자의 감정을 인식하여 그에 적절한 피드백을 제공하는 것이 중요하다. 본 논문에서는 학습자에 대한 적절한 피드백을 제공하기 위해서 상황인식 컴퓨팅 기술을 바탕으로 학습자의 감정표현단어를 상황정보로 사용하여 감정을 인식할 수 있는 상황인식 미들웨어로서 EF-CAM을 제안한다. EF-CAM은 감정표현단어의 범주화기술을 기반으로 온톨로지를 구축하여 학습자의 감정을 인식한다. 이러닝 학습자의 감정을 인식하기 위해서 학습자의 감정표현 단어를 상황정보로 사용하고, 학습자의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨 등)를 추가하여 인식한다. 학습자의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였다.
사용자의 감정을 자동으로 인식하는 연구는 사용자 중심의 서비스를 제공할 때 중요한 요소이다. 인간은 하나의 감정을 다양하게 분류하여 인식한다. 그러나 기계학습을 통해 감정을 인식하려고 할 때 감정을 단일값으로 취급하는 방법만으로는 좋은 성능을 기대하기 어렵다. 따라서 본 논문에서는 비감독 학습과 감독학습을 결합한 감정인식 모델을 제시하였다. 제안된 모델의 핵심은 비감독 학습을 이용하여 인간처럼 한 개의 감정을 다양한 하부 감정으로 분류하고, 이렇게 분류된 감정을 감독학습을 통해 성능을 향상 시키는 것이다.
이 연구에서는 욕구라는 구인을 도입하여 동료 간 토의를 중심으로 한 수학 수업이라는 특정한 수학 학습 맥락 속에서 대학생들의 수학 학습 동기와 수학 학습 감정이 어떻게 일어나며, 그 둘이 어떻게 관계를 맺는지 분석하였다. 연구의 핵심 개념인 수학 학습 동기와 수학 학습 감정을 개념화하고 이를 기반으로 수학 학습 동기와 수학 학습 감정을 관찰할 수 있는 구체적인 방법을 도출하여 연구를 진행하였다. 그 결과 수학 학습 동기는 욕구를 충족시키기 위해 일어났으며, 욕구가 충족될 때와 충족되지 않을 때 각각 긍정적인 수학 학습 감정과 부정적인 수학 학습 감정이 일어났다. 또한, 수학 학습 동기를 일어나게 한 욕구가 충족되면 긍정적인 수학 학습 감정이 일어났으며, 욕구가 충족되지 않아 부정적인 수학 학습 감정이 일어나면 그 욕구를 충족시키기 위해 수학 학습 동기가 일어났다.
감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.
본 논문에서는 인간과 엔터테인먼트 로봇의 상호작용을 위해, 동기(motivation)와 계층화된 감정(hierarchical emotion)에 기반한 행동결정 모델을 설계하였다. 감정모델은 계층화되고 학습 가능하도록 하여, 인간의 행동결정과 유사하게 동작하도록 하였다. 감정모델을 통해 로봇의 행동에 대한 인간의 반응이 학습되는데, 그 결과가 행동결정에 영향을 주어 로봇의 행동에 반영되도록 하였다. 감정모델과 함께 동기가 행동결정에 영향을 주는데, 초기에는 외부에서 주어지는 동기가 주로 행동을 결정하고, 감정모델이 학습될수록 점차 감정의 영향이 증가하여 동기와 계층화된 감정을 함께 고려하여 행동을 결정하도록 하였다. 그럼으로써, 인간과의 상호작용을 통해 정보를 축적하고 인간의 반응에 적응해나갈 수 있게 하였다
감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.
본 논문에서는 기존 감정 인식 시스템의 성능 향상을 위하여 감정 적응을 사용한 감정 학습 방법이 제안되었다. 감정 적응을 위하여 적은 개수의 학습 감정 음성과 감정 적응 방식을 사용하여 감정이 없는 음성 모델로부터 감정 음성 모델이 생성되었다. 이러한 방법은 기존 방법보다 적은 개수의 감정 음성을 사용하여도 우수한 성능을 나타내었다. 학습을 위하여 충분한 감정 음성을 얻는 것은 쉽지 않기 때문에 적은 개수의 감정 음성을 사용하는 것은 실제 상황에서 매우 실용적이다. 4가지 감정이 포함된 한국어 데이터베이스를 사용한 실험 결과에서 감정 적응을 이용한 제안된 방법이 기존 방법보다 우수한 성능을 나타내었다.
본 연구의 목적은 2020년 COVID-19의 확산으로 전면 비대면 온라인(녹화 강의 및 실시간 화상 수업)으로 전환된 교양영어 수업을 수강한 대학 신입생들의 학습 감정을 알아보는데 있다. 연구 방법은 B대학 신입생 170명을 대상으로 학습감정검사지(Academic Emotion Questionnaire; AEQ)을 이용하여 설문조사하였다. 수집된 자료는 SPSS 19.0 프로그램으로 통계 처리하였고, 연구결과는 다음과 같다. 첫째, 신입생들의 영어 학습 감정이 온라인 수업 유형에 따라 긍정의 감정과 부정의 감정에서 모두 유의한 차이를 보였다(p < .01). 긍정의 감정은 녹화 강의수업에서, 부정의 감정은 실시간 화상 수업에서 더 높았다. 둘째, 신입생들의 영어 수준에 따라 온라인 수업 유형에 대한 학습 감정이 유의한 차이를 보였지만(p < .01), 수준과 무관하게 긍정의 감정은 녹화 강의에서 높았고, 부정의 감정은 실시간 화상수업에서 더 높았다. 셋째, 신입생들의 전공에 따라 온라인 수업 유형에 대한 학습 감정은 긍정의 감정에서만 유의한 차이를 보였다(p < .01). 자연이공계열 학생들이 인문사회계열 학생보다 동영상수업에 대한 긍정의 감정이 높았다. 마지막으로, 신입생들의 성별에 따라 온라인 수업 유형에 대한 학습 감정은 부정의 감정에서만 유의한 차이를 보였다(p < .01). 온라인 수업유형과 무관하게 여학생의 부정 감정이 남학생의 부정 감정보다 높았다. 연구결과를 토대로 제언 및 교육적 함의가 논의되었다.
본 연구의 목적은 대학 신입생들의 교양 영어 수업에 대한 학습 감정을 알아보기 위해 시행되었다. 구체적으로 수준별로 원어민과 한국인 교수의 팀티칭으로 진행되는 의사소통 활동 위주의 교양 영어 수업에 대한 신입생들의 학습감정을 탐색하였다. 연구 방법은 B대학 신입생 327명을 대상으로 학습감정검사지(Academic Emotion Questionnaire; AEQ)를 이용하여 설문조사하였고, 수집된 자료는 SPSS 19.0 프로그램으로 통계 처리하였다. 연구결과는 다음과 같다. 첫째, 신입생들의 영어 학습 감정이 영어 수준에 따라 유의한 차이를 보였는데 상급반 학생이 초급반과 중급반 학생들보다 걱정과 지루함을 더 많이 느꼈다(P < .05). 둘째, 신입생들의 영어 학습 감정이 원어민과 한국인 교수자에 따라 유의한 차이를 보였는데, 원어민 교수의 수업이 한국인 교수의 수업 보다 더 재미있고, 더 만족스럽고, 덜 지루하다는 결과를 보였다(P < .001). 셋째, 신입생들의 영어 학습 감정이 의사소통 활동 유형에 따라 유의한 차이를 보였는데 게임이 제일 재미있고 만족스러운 반면, 발표하기는 제일 걱정되고 지루하다는 결과를 보였다(P < .001). 연구 결과를 토대로 대학 신입생들의 영어 학습 감정 개선을 위한 제언 및 교육적 함의가 논의되었다.
본 논문은 기계 학습을 이용한 감정 분류에 필요한 학습 말뭉치를 효율적으로 확장하는 방법에 대하여 기술한다. 학습 말뭉치는 일반적으로 그에 알맞은 레이블을 정해야 하는데, 그 양이 어마어마하기 때문에 이 과정을 일일이 사람이 할 수는 없다. 그에 대한 해결책으로써 이미 많은 준지도학습 방법이 연구되었고, 그것을 트윗이라는 짧은 문서를 감정 분류하는 것에 적용해도 감정 문서 분류기의 성능이 좋다는 결과를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.