본 논문은 감정단어(Sentiment Word)의 의미적 특성을 반영하여 한국어 문서 감정분류 시스템의 성능을 향상시킬 수 있는 방법을 제안한다. 감정단어는 감정을 가지는 단어를 의미하며, 감정단어들의 집합은 감정자질(Sentiment Feature)로써 감정분류를 위한 중요한 어휘 자원이다. 감정자질은 일반적으로 사용될 때와 특정 영역(Domain)에서 사용될 때에 그 감정 정도의 차이를 가진다. 감정자질이 일반적으로 사용될 때 그 감정 정도는 검색 엔진을 통해 얻을 수 있는 스니핏(Snippet)을 통해 추정할 수 있으며, 특정 영역에서 사용될 때의 감정 정도는 실험 말뭉치를 이용하여 추정할 수 있다. 이렇게 추정된 감정자질의 감정 정도 수치를 의미지향성이라고 하며, 문서내의 문장의 감정 강도를 추정하기 위해 이용된다. 문장의 감정 강도가 추정되면 문장 감정 강도를 감정자질의 가중치에 반영하게 된다. 본 논문은 지지 벡터 기계(Support Vector Machine)를 이용하여 일반적, 영역 의존적, 일반적/영역 의존적 의미지향성을 반영한 경우에 대해 성능을 평가한다. 평가 결과, 앞의 3가지 경우에 모두 성능 향상을 얻었으며 일반적/영역 의존적 의미지향성을 반영한 경우, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능 향상을 얻을 수 있었다.
본 논문에서는 음성 신호를 이용해서 화자의 감정을 인식하기 위해 3가지 시스템을 구축하고 이들의 성능을 비교해 보았다. 인식 대상으로 하는 감정은 기쁨, 슬픔, 화남, 두려움, 지루함, 평상시의 감정이고, 각 감정에 대한 감정 음성 데이터베이스를 직접 구축하였다. 피치와 에너지 정보를 감성 인식의 특징으로 이용하였고, 인식 알고리듬은 MLB(Maximum-Likelihood Bayes)분류기, NN(Nearest Neighbor)분류기 및 HMM(Hidden Markov Model)분류기를 이용하였다. 이 중 MLB 분류기와 NN 분류기에서는 특징벡터로 피치와 에너지의 평균과 표준편차, 최대값 등 통계적인 정보를 이용하였고, TMM 분류기에서는 각 프레임에서의 델타 피치와 델타델타 피치, 델타 에너지와 델타델타 에너지 등 시간적 정보를 이용하였다. 실험은 화자종속, 문장독립형 방식으로 하였고, 인식 실험 결과는 MLB를 이용해서 $68.9\%, NN을 이용해서 $66.7\%를 얻었고, HMM 분류기를 이용해서 $89.30\%를 얻었다.
본 논문에서 음성신호를 사용하여 인간의 감정를 인식하기 위한 특징 파라메터 비교에 관하여 연구하였다. 이를 위하여 여러 가지 감정 상태에 따라 분류된 한국어 음성 데이터 베이스를 이용하여 얻어진 음성 신호의 피치와 에너지의 평균, 표준편차와 최대 값 등 통계적인 정보 나타내는 파라메터와 음소의 특성을 나타내는 MFCC 파라메터가 사용되었다. 파라메터들의 성능을 평가하기 위하여 문장 및 화자 독립 감정 인식 시스템을 구현하여 인식 실험을 수행하였다. 성능 평가를 위한 실험에서는 운율적 특징으로 피치와 에너지와 각각의 미분 값을 사용하였고, 음소의 특성을 나타내는 특징으로 MFCC와 그 미분 값을 사용하였다. 벡터 양자화 방법을 사용한 화자 및 문장 독립 인식 시스템을 사용한 실험 결과에서 MFCC와 델타 MFCC를 사용한 경우가 피치와 에너지를 사용한 방법보다 우수한 성능을 나타내었다.
감정으로 인해 생기는 신체적 정신적인 변화는 운전이나 학습 행동 등 다양한 행동에 영향을 미칠 수 있다. 따라서 이러한 감정을 인식하는 것은 운전 중 위험한 감정 인식 및 제어 등 다양한 산업에서 이용될 수 있기 때문에 매우 중요한 과업이다. 본 논문에는 서로 도메인이 다른 음성과 영상 데이터를 모두 이용하여 감정을 인식하는 멀티모달 모델을 구현하여 감정 인식 연구를 진행했다. 본 연구에서는 RAVDESS 데이터를 이용하여 영상 데이터에 음성을 추출한 뒤 2D-CNN을 이용한 모델을 통해 음성 데이터 특징을 추출하였으며 영상 데이터는 Slowfast feature extractor를 통해 영상 데이터 특징을 추출하였다. 감정 인식을 위한 제안된 멀티모달 모델에서 음성 데이터와 영상 데이터의 특징 벡터를 통합하여 감정 인식을 시도하였다. 또한 멀티모달 모델을 구현할 때 많이 쓰인 방법론인 각 모델의 결과 스코어를 합치는 방법, 투표하는 방법을 이용하여 멀티모달 모델을 구현하고 본 논문에서 제안하는 방법과 비교하여 각 모델의 성능을 확인하였다.
컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.
본 논문에서는 동적얼굴영상으로부터 감정인식을 위해 벡터 표현 보다는 직접적인 텐서 표현으로 특징들을 추출하는 텐서 기반 다선형 주성분분석(MPCA: Multilinear Principal Component Analysis) 기법을 사용한다. 사람 6가지의 얼굴 표정을 사용하는데 한 사람의 각 표정마다 5프레임으로 묶어서 텐서 형태로 취하여 특징을 추출하고 인식한다. 시스템의 성능 평가는 CNU 얼굴 감정인식 데이터베이스를 이용하여 특징점 개수와 성능척도에 따른 실험을 수행하여 제시된 방법의 유용성에 관해 살펴본다.
본 논문에서는 Text Classification에 사용된 딥러닝 모델을 적용하여 행동 인식, 손동작 인식 및 감정 인식 방법을 제안한다. 먼저 라이브러리를 사용하여 영상에서 특징 추출 후 식을 적용하여 특징의 벡터를 저장한다. 이를 Conv1D, Transformer, GRU를 결합한 모델에 학습시킨다. 이 방법을 통해 하나의 딥러닝 모델을 사용하여 다양한 분야에 적용할 수 있다. 제안한 방법을 사용해 SYSU 3D HOI 데이터셋에서 99.66%, eNTERFACE' 05 데이터셋에 대해 99.0%, DHG-14 데이터셋에 대해 95.48%의 클래스 분류 정확도를 얻을 수 있었다.
최근에 다양한 정보로부터 감정을 예측하여 청중에게 감독이 알리고자 하는 정보를 빠르게 전달하고자 한다. 또한, 청중은 감독의 의도를 대화 내용에 나타나는 대사뿐만 아니라, 영상내의 다양한 정보인 촬영 기법, 장면의 배경, 배경 음악 등을 통해 비대사 구간에서도 감정의 흐름을 이해하려고 한다. 본 논문에서는 대사와 같은 문맥의 상황뿐만 아니라, 촬영 영상에 담아낸 색상, 음향, 구도, 배치 등에 의해 표현된 정보를 혼합하여 감정을 추출하고자 한다. 즉, 다양한 감정 표현 기법을 대사 구간, 비대사 구간으로 나누어 학습하고 판별하여 영상의 완성도에 기여하고 새로운 변화에 빠르게 적용할 수 있는 감정 예측 시스템을 제안한다. 본 논문에서 제안한 감정 예측시스템이 변형된 n-gram 방식과 형태소 분석을 적용한 사례와 비교했을 때, 정확도는 약 5.1%, 0.4% 향상되었고, 재현율은 약 4.3%, 1.6% 향상되었다.
본 논문에서는 퍼지모델을 기반으로 한 형판 벡터를 이용하여 인간의 감성을 인식할 수 있는 방법을 제안한다. 먼저 형판을 이용하여 얼굴 영상으로부터 얼굴의 특징(눈썹, 눈, 입)들을 추출한다. 추출한 형판으로부터 형판 벡터를 추출하고 이를 퍼지모델에 적용한다. 그 다음 감정에 따라 변하는 각각의 상태정보 이용하여 인간의 감성(놀람, 화남, 행복함, 슬픔)을 인식하는 방법을 제안한다. 마지막으로, 제안된 방법은 실험을 통해 그 응용 가능성을 확인한다.
본 논문에서는 다양한 환경하에서 인간의 식별과 감정을 인식할 수 있는 감정 인식 알고리즘을 제안한다. 제안된 알고리즘을 구현하기 위해, 먼저, CCD 칼라 카메라에 의해 획득한 원 영상으로부터 피부색을 이용해 얼굴영상을 얻는 과정을 거친다. 그 다음, 주요 요소분석을 기본으로 하는 얼굴인식기술인 Eigenface를 사용하여 이미지들을 고차원의 픽셀공간으로부터 저차원공간으로의 변환하는 과정을 거친다. 제안된 개인에 대한 식별과 감성인식은 사용한 특징벡터들의 추출로 인한 Eigenface의 가중치와 상관관계를 통해 이루어진다. 즉, 영상의 가중치로부터 개인에 대한 식별과 감성정보를 찾는 방법을 제안한다. 마지막으로, 실험을 통해 제안된 방법의 응용가능성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.