Proceedings of the Korea Inteligent Information System Society Conference
/
1999.10a
/
pp.391-398
/
1999
사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.510-512
/
2003
본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.581-584
/
2002
본 논문에서는 범주 내의 키워드 빈도에 의해 문서를 자동으로 분류하는 방법을 제안한다. 문서 자동분류 시스템에서는 문서와 문서를 비교하기 위해서 분류 자질(feature)에 적절한 가중치를 부여할 필요가 있다. 본 논문에서는 수작업으로 분류된 신문기사를 이용하여 자질의 가중치를 학습하는 방법을 사용하였다. 기존의 용어가중치 방법은 각 범주별로 가장 많이 등장한 명사부터 순서대로 추출하여 가중치를 주는 방법을 사용한 것에 비해 본 논문에서는 명사의 출현 횟수뿐만 아니라 출현위치를 함께 고려하여 가중치를 계산하는 방법을 제안한다. 또한 단어 빈도 가중치 방법의 변형된 방식을 사용함으로써 기존의 단어 빈도 가중치 방법과 비교하여 분류 정확도 측면에서 9%이상 성능 향상을 있음을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.331-333
/
2001
본 논문에서는 퍼지집합의 소속함수에 대한 가중치 함수를 제안한다. 제안하는 가중치 함수는 퍼지집합의 소속함수에 곱해지는 형태로서 적용되어지며, 이것은 소속함수에 대한 사용자의 선호도를 의미한다. 제안하는 가중치 함수의 개념은 기본적으로 소속함수를 사용하는 어떤 퍼지 집합의 응용에서도 적용될 수 있을 것으로 보이나, 본 논문에서는 그 중 한가지 경우로 비퍼지화 방법을 적용 대상으로 선택하였다. 제안하는 가중치 함수가 비퍼지화 방법에 있어서 가지는 의미를 보이며, 기존의 비퍼지화 방법들에서 이러한 가중치 함수의 개념이 어떻게 적용되어 왔는지를 보인다. 또한 기존의 비퍼지화 방법들이 개녀멩 적용되지 않은 형태의 가중치 함수를 선택하여, 비퍼지화 방법에 특정 가중치 함수를 적용하였을 때의 특성 변화를 보인다. 이러한 일반적인 형태의 가중치 함수를 퍼지집합의 소속함수에 적용함으로서, 다양한 형태의 선호도를 퍼지집합의 형태에 반영할 수 있을 것으로 보인다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.895-897
/
2004
문서 검색 시스템에서 특정 주지에 관한 문서를 검색하기 위한 색인어의 가중치 부여 방법으로 단순빈도와 역문헌빈도에 의한 가중치 부여 방법을 주로 이용한다 하지만 빈도 정보만을 이용한 방법은 성능 및 정확도의 향상에 한계가 있다. 이에 본 논문에서는 특허 문헌 검색 시스템의 검색 효율을 높이기 위해 자주 출현하는 복합명사의 재출현 양상과 복합명사의 역할변화에 따른 가중치 부여 방법을 제안한다 본 연구에서 제안한 가중치 부여 방법을 이용하여 실험한 결과 단순빈도와 역문헌빈도 정보를 이용한 방법보다 더 나은 성능을 보였다 .
This study compares Customer Satisfaction Index(CSI) and the weight for each dimension by applying various methods of weight calculation and attempts to suggest some implications. For the purpose, the study classified the methods of weight calculation into the subjective method and the statistical method. Constant sum scale was used for the subjective method, and the statistical method was again segmented into correlation analysis, principal component analysis, factor analysis, structural equation model. The findings showed that there is difference between the weights from the subjective method and the statistical method. The order of the weights by the analysis methods were classified with similar patterns. Besides, the weight for each dimension by different methods of weight calculation showed considerable deviation and revealed the difference of discrimination and stability among the dimensions. Lastly, the CSI calculated by various methods of weight calculation showed to be the highest in structural equation model, followed by in the order of regression analysis, correlation analysis, arithmetic mean, principal component analysis, constant sum scale and factor analysis. The CSI calculated by each method showed to have statistically significant difference.
Virtual Bass System (VBS) is widely used to extend the lower frequency limit of small loudspeakers, which generates harmonics of a fundamental frequency. The perceptual quality of the VBS is highly dependent on the harmonic weighting strategy. There have been several weighting methods, including exponential attenuation and timbre matching. However, it is essential to match phases between harmonics in the original signal and generate harmonics to precisely convey the weighting strategy. This paper shows the limitations of the previous harmonic weighting schemes and proposes a new harmonic weighting scheme. The proposed weighting scheme proposes phase matching between the original and generated harmonics and varies the slope of the attenuation weighting dynamically according to the missing fundamental frequency. Objective and subjective tests show that the proposed harmonic weighting scheme provides more natural and effective bass perception in a limited situation than the conventional schemes, which implies that the phase matching is essential for the high quality bass enhancement.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.157-162
/
2001
한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.85-89
/
2006
구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.703-706
/
2007
보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그를 중요도에 따라 분류하고, 낮은 태그에서 추출된 용어 가중치를 계산하고, 그 가중치로 높은 가중치의 태그에서 추출된 용어의 가중치를 갱신해 가면서 최종 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 사용자가 중요하게 생각하는 태그를 실험해 보고 그에 따라 중요도를 분류하여 가중치 계산에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.