• Title/Summary/Keyword: 가우스 혼합모델

Search Result 25, Processing Time 0.025 seconds

Effective Parameter Estimation of Bernoulli-Gaussian Mixture Model and its Application to Image Denoising (베르누이-가우스 혼합 모델의 효과적인 파라메터 추정과 영상 잡음 제거에 응용)

  • Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.47-54
    • /
    • 2005
  • In general, wavelet coefficients are composed of a few large coefficients and a lot of small coefficients. In this paper, we propose image denoising algorithm using Bernoulli-Gaussian mixture model based on sparse characteristic of wavelet coefficient. The Bernoulli-Gaussian mixture is composed of the multiplication of Bernoulli random variable and Gaussian mixture random variable. The image denoising is performed by using Bayesian estimation. We present an effective denoising method through simplified parameter estimation for Bernoulli random variable using local expected squared error. Simulation results show our method outperforms the states-of-art denoising methods when using orthogonal wavelets.

Fire Detection in Outdoor Using Statistical Characteristics of Smoke (연기의 통계적 특성을 이용한 실외 화재 감지)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Detection performance of fire detection in the outdoor depends on weather conditions, the shadow by the movement of the sun, or illumination changes. In this paper, a smoke detection in conjunction with a robust background estimate algorithm to environment change in the outdoor in daytime is proposed. Gaussian Mixture Model (GMM) is applied as background estimation, and also, statistical characteristics of smoke is applied to detect the smoke for separated candidate region. Through the experiments with input videos obtained from a various weather conditions, the proposed algorithms were useful to detect smoke in the outdoor.

Noise Removal Using Complex Wavelet and Bernoulli-Gaussian Model (복소수 웨이블릿과 베르누이-가우스 모델을 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.52-61
    • /
    • 2006
  • Orthogonal wavelet tansform which is generally used in image and signal processing applications has limited performance because of lack of shift invariance and low directional selectivity. To overcome these demerits complex wavelet transform has been proposed. In this paper, we present an efficient image denoising method using dual-tree complex wavelet transform and Bernoulli-Gauss prior model. In estimating hyper-parameters for Bernoulli-Gaussian model, we present two simple and non-iterative methods. We use hypothesis-testing technique in order to estimate the mixing parameter, Bernoulli random variable. Based on the estimated mixing parameter, variance for clean signal is obtained by using maximum generalized marginal likelihood (MGML) estimator. We simulate our denoising method using dual-tree complex wavelet and compare our algorithm to well blown denoising schemes. Experimental results show that the proposed method can generate good denoising results for high frequency image with low computational cost.

Noise Reduction Using Gaussian Mixture Model and Morphological Filter (가우스 혼합모델과 형태학적 필터를 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Generally, wavelet coefficients can be classified into two categories: large coefficients with much signal information and small coefficients with little signal component. This statistical characteristic of wavelet coefficient is approximated to Gaussian mixture model and efficiently applied to noise reduction. In this paper, we propose an image denoising method using mixture modeling of wavelet coefficients. Binary mask value is generated by proper threshold which classifies wavelet coefficients into two categories. Information of binary mask value is used to remove image noise. We also develope an enhancement method of mask value using morphological filter, and apply it to image denoising for improvement of the proposed method. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals (음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.119-128
    • /
    • 2008
  • This paper analyzes the relationship between two representative statistical methods for bandwidth extension (BWE): Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) ones, and compares their performances. The HMM method is a memory-based system which was developed to take advantage of the inter-frame dependency of speech signals. Therefore, it could be expected to estimate better the transitional information of the original spectra from frame to frame. To verify it, a dynamic measure that is an approximation of the 1st-order derivative of spectral function over time was introduced in addition to a static measure. The comparison result shows that the two methods are similar in the static measure, while, in the dynamic measure, the HMM method outperforms explicitly the GMM one. Moreover, this difference increases in proportion to the number of states of HMM model. This indicates that the HMM method would be more appropriate at least for the 'blind BWE' problem. On the other hand, nevertheless, the GMM method could be treated as a preferable alternative of the HMM one in some applications where the static performance and algorithm complexity are critical.

Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain (웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • Wavelet transform is a useful tool for analysis and process of image. This showed good performance in image compression and noise reduction. Wavelet coefficients can be effectively modeled by hidden Markov tree(HMT) model. However, in application of HMT model to image interpolation, training procedure is needed. Moreover, the parameters obtained from training procedure do not match input image well. In this paper, the structure of HMT is used for image interpolation, and the parameters of HMT are obtained from statistical characteristics across wavelet subbands without training procedure. In the proposed method, wavelet coefficient is modeled as Gaussian mixture model(GMM). In GMM, state transition probabilities are determined from statistical transition characteristic of coefficient across subbands, and the variance of each state is estimated using the property of exponential decay of wavelet coefficient. In simulation, the proposed method shows improvement of performance compared with conventional bicubic method and the method using HMT model with training.

A Vehicle Tracking System using SURF Algorithm in Vision-based Traffic Surveillance (교통감시영상에서 SURF 알고리듬을 이용한 차량추적시스템)

  • Kim, SangGi;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.139-140
    • /
    • 2015
  • 본 논문에서는 교통 감시 시스템에서 차량추적방법을 제안한다. 교통 감시 카메라를 이용한 차량추적시스템은 차량 감시, 사고감지 및 교통정보를 확인할 수 있게 하는 시스템이다. 차량추적을 위하여 먼저 가우스 혼합 모델(Gaussian Mixture Model)을 이용하여 배경과 전경을 분리하고 형태학적 필터링을 이용하여 차량을 검출한다. 검출된 차량으로부터 SURF(Speed Up Robust Features) 매칭을 통하여 차량추적방법을 제안한다.

  • PDF

Assessment of Hydrological Drought Risk Considering Regional Water Supply Capacity (지역적 용수공급능력을 고려한 수문학적 가뭄 위험도 평가)

  • Kim, Ji Eun;Yu, Jisoo;Lee, Joo-Heon;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.152-152
    • /
    • 2020
  • 가뭄은 장기간에 걸쳐 광범위하게 발생하는 특징으로 인해 자연재해뿐만 아니라 사회·경제적으로도 큰 피해를 야기한다. 즉, 가뭄으로 인한 댐의 용수 공급 부족은 공업·농업뿐만 아니라 국민들의 생활에도 상당한 피해를 미친다. 하지만, 가뭄으로 인한 지역의 피해정도는 해당 지역의 특성 또는 가뭄에 대한 지역의 대처 능력에 따라 매우 상이하게 나타난다. 따라서, 가뭄에 의한 피해를 저감시키고 안전한 용수공급이 이루어질 수 있도록 지역의 특성 및 용수 공급 체계를 고려한 위험 정도를 분석하는 것이 필요하며, 사람들과 직접적인 연관성이 높은 물수급 관련 인자들을 고려하여 가뭄의 잠재적 영향 및 피해정도를 파악할 수 있는 가뭄 위험도 평가가 수행되어야 한다. 그러나 용수공급 및 수요 현황을 반영한 가뭄 노출성 및 취약성 평가는 아직 부족한 실정이며, 각 인자에 대한 가중치를 산정하는데 설문조사 또는 단순평균방법이 많이 이용되고 있다. 본 연구에서는 용수공급 체계 및 지역적 특성을 고려하고 객관적인 가중치 산정방안이 적용된 확률·통계적 가뭄 위험도를 평가방법을 제시하였다. 먼저, 용수공급 실패 사상의 발생 확률이 적용된 결합가뭄관리지수(Joint Drought Management Index, JDMI)를 통해 가뭄노출성지수(Drought Hazard Index, DHI)를 산정하고, 각 인자에 대한 영향정도를 객관적으로 판단할 수 있는 가우스 혼합 모델을 활용하여 가뭄취약성지수(Drought Vulnerability Index, DVI)를 산정하였다. 이 두 지수를 결합하여 가뭄위험도지수(Drought Risk Index, DRI)를 계산하고 위험도 평가를 수행하였다. 충청지역에 적용한 결과, DHI는 용수공급 실패 사상의 발생확률이 큰 보령시가 가장 높게 나타났으며, DVI는 농업적 요소의 가중치가 크게 산정됨에 따라 청주시가 가장 높게 산정되었다. DHI와 DVI가 결합된 DRI의 경우는 청주시가 가장 위험한 것으로 나타났다. 따라서, DRI가 가장 높은 청주시는 충정 지역의 가뭄 위험 경감을 위한 대응 수립시 우선적으로 고려되어야 한다.

  • PDF

Bayesian Image Denoising with Mixed Prior Using Hypothesis-Testing Problem (가설-검증 문제를 이용한 혼합 프라이어를 가지는 베이지안 영상 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.34-42
    • /
    • 2006
  • In general, almost information is stored in only a few wavelet coefficients. This sparse characteristic of wavelet coefficient can be modeled by the mixture of Gaussian probability density function and point mass at zero, and denoising for this prior model is peformed by using Bayesian estimation. In this paper, we propose a method of parameter estimation for denoising using hypothesis-testing problem. Hypothesis-testing problem is applied to variance of wavelet coefficient, and $X^2$-test is used. Simulation results show our method outperforms about 0.3dB higher PSNR(peak signal-to-noise ratio) gains compared to the states-of-art denoising methods when using orthogonal wavelets.

Image Histogram Equalization Based on Gaussian Mixture Model (가우시안 혼합 모델 기반의 영상 히스토그램 평활화)

  • Jun, Mi-Jin;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.748-760
    • /
    • 2012
  • In case brightness distribution is concentrated in a region, it is difficult to classify the image features. To solve this problem, we apply global histogram equalization and local histogram equalization to images. In case of global histogram equalization, it can be too bright or dark because it doesn't consider the density of brightness distribution. Thus, it is difficult to enhance the local contrast in the images. In case of local histogram equalization, it can produce unexpected blocks in the images. In order to enhance the contrast in the images, this paper proposes a local histogram equalization based on the Gaussian Mixture Models(GMMs) in regions of histogram. Mean and variance parameters in each regions is updated EM-algorithm repeatedly and then ranges of equalization on each regions. The experimental results performed with image of various contrasts show that the proposed algorithm is better than the global histogram equalization.