• Title/Summary/Keyword: 가스 압력

Search Result 2,096, Processing Time 0.034 seconds

Synthesis of a Fluorene Carbonate from Fluorenyl Epoxide Using Supercritical Carbon Dioxde (초임계이산화탄소를 이용한 플로레닐계 에폭사이드로부터 카보네이트 화합물의 합성)

  • Sim, Yun-Soo;Shim, Jae-Jin;Ra, Choon-Sup
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.239-244
    • /
    • 2010
  • The carboxylation of the fluorenyl epoxide with a spiro framework, 9,9'-Bis(4-oxiranylmethoxyphenyl) fluorine (2) was catalyzed by some onium salts such as quaternary ammonium and phosphonium salts to produce the corresponding five-membered cyclic carbonate (3) in an efficient and environmentally benign fashion. The coupling reactions depend greatly on the kind of the halide anions and alkyl chain length of the onium salts. While the reaction was sensitive to the reaction temperature, the reaction trends suggest that the catalytic efficiency of the quaternary ammonium halides may correlate strongly with the melting points of the halides. The reactions using a catalytic amount (2 mol %) of quaternary ammonium bromide with an n-butyl chain at 75.9 bar of $CO_2$ and 393 K give the highest yield of the cyclic carbonate (92%).

Development of a quantification method for modelling the energy budget of water distribution system (상수관망 에너지 모의를 위한 정량화 분석기법 개발)

  • Choi, Doo Yong;Kim, Sanghyun;Kim, Kyoung-Pilc
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1223-1234
    • /
    • 2022
  • Efforts for reducing greenhouse gas emission coping with climate change have also been performed in the field of water and wastewater works. In particular, the technical development for reducing energy has been applied in operating water distribution system. The reduction of energy in water distribution system can be achieved by reducing structural loss induced by topographic variation and operational loss induced by leakage and friction. However, both analytical and numerical approaches for analyzing energy budget of water distribution system has been challengeable because energy components are affected by the complex interaction of affecting factors. This research drew mathematical equations for 5 types of state (hypothetical, ideal, leak-included ideal, leak-excluded real, and real), which depend on the assumptions of topographic variation, leakage, and friction. Furthermore, the derived equations are schematically illustrated and applied into simple water network. The suggested method makes water utilities quantify, classify, and evaluate the energy of water distribution system.

A Study on the Structural Stability of Nozzle Manufactured with 5-axis Machining (5축 가공으로 제작한 노즐의 구조 안정성에 관한 연구)

  • Changwook Lee;Yongseok Park;DuckYong Jo;Seong Man Choi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, 5-axis machining was proposed as a method for manufacturing a nozzle with a curved shape, and flow analysis and structural analysis were used for structural validation of the manufactured geometry. The program used for CFD obtained the internal temperature and pressure distribution of the nozzle using STAR-CCM+ and used it as the boundary condition for structural analysis. For structural analysis, the commercial program NASTRAN was used, and stress was calculated using the von-mises technique. Based on the maximum stress value generated, the safety margin was 0.78 and the safety margin of the bearing stress was 46.8. In addition, the creep life was calculated as 9.97 x 1012 hours using the Larson-Miller parametric method and applying the maximum stress value of 187 MPa and the exhaust gas perfectly mixed temperature of 463 K.

Hydrogen Refueling Stations Improving Safety and Economic Feasibility (안전성과 경제성이 개선된 수소충전소)

  • YunSil Huh;DongHoon Lee;Yongjin Chung;Yongchai Kwon
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.611-618
    • /
    • 2023
  • The purpose of the refueling protocol and the contents of SAE J2601, which is used as the basis for hydrogen vehicles refueling around the world, were investigated, and research contents related to domestic protocols were also investigated. In addition, the components of the hydrogen refueling performance evaluation device developed in Korea and the method for evaluating the performance and safety of hydrogen refueling stations were reviewed. And, the result were analyzed by applying it to the hydrogen refueling stations currently operating in Korea. In addition, an economic feasibility analysis was conducted using data collected from domestic hydrogen refueling stations. In order to secure the safety and economy of a hydrogen refueling station, the protocol must be satisfied, and in order to satisfy the protocol, it is necessary to evaluate whether the refueling temperature, refueling pressure, and refueling flow are controlled within a safe range.

A Review on the Vertical Coordinate Systems used in Oceanic and Atmospheric Circulation Numerical Model (해양 및 대기 순환 수치모델에 사용하는 연직 좌표계에 대한 고찰)

  • HyukJin Choi;Shin Taek Jeong;Hong-Yeon Cho;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.158-166
    • /
    • 2024
  • In a numerical method for the study of the circulation model, various vertical coordinate systems are used to simulate the physical response of the ocean and atmosphere to the increasing greenhouse gas emission. In this study, four types of vertical coordinate systems frequently used in oceanic and atmospheric circulation numerical models, i.e., height, general, pressure, and normalized vertical coordinate systems, respectively are introduced. Finally, the hydrostatic pressure equation, vertical velocity, equation of horizontal motion, and continuity equation expressed in a vertical coordinate system were introduced, and the pros and cons of the vertical coordinate system were summarized to promote the accuracy of numerical model development.

The Effect of Contamination of Ion Source on Ionic Current of Quadrupole Mass Spectrometer (사중극 질량 분석기의 이온소스 오염이 이온전류에 미치는 영향)

  • Lee, K.C.;Park, C.J.;Kim, J.T.;Oh, E.S.;Hong, K.S.;Hong, S.S.;Lim, I.T.;Yun, J.Y.;Kang, S.W.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • The long term stability of ion current of QMS has been one of key parameters for monitoring gas process in vacuum. The time dependence of ionic current was monitored while the pressure of nitrogen gas was kept at a fixed pressure by introducing the gas into vacuum chamber. The chamber was evacuated to ${\sim}3{\times}10^{-9}\;Torr$ to reduce background signals before the measurement. Two ion sources were tested; one had brownish or black color due to gas contamination and the other one was new, i.e. cleaner. At a nitrogen pressure of $1{\times}10^{-5}\;Torr$, the ionic currents measured by the contaminated ion source decreased faster with time. The decrease rate was respectively ${\sim}46%$ for cleaner one and ${\sim}84%$ for contaminated one after ${\sim}5.5%$ hours. In order to test the effect of filament material on the ion current decrease, we fabricated a tungsten(W) filament which consisted of two parts; one half was made of W and the other was coated with yttria. The similar decrease of ionic currents were shown for the two types of filaments, indicating that slight change of temperature of filament due to material difference i.e. baking effect could not improve the origin of ionic current decrease. Overall the decreasing rate of ionic current is more closely associated with contaminated ion source of QMS rather than its filament materials.

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

A Study of Hydrodynamics and Reaction Characteristics in Relation to the Desulfurization Temperatures of Zn-Based Solid Sorbent in the Lab-scale High Pressure and High Temperature Desulfurization Process (실험실규모 고온고압건식탈황공정의 수력학적 특성 및 탈황온도에 따른 아연계 탈황제의 반응특성 연구)

  • Kyung, Dae-Hyun;Kim, Jae-Young;Jo, Sung-Ho;Park, Young Cheol;Moon, Jong-Ho;Yi, Chang-Keun;Baek, Jeom-In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.492-498
    • /
    • 2012
  • In this study, hydrodynamics such as solid circulation rate and voidage in the desulfurizer and the reaction characteristics of Zn-based solid sorbents were investigated using lab-scale high pressure and high temperature desulfurization process. The continuous HGD (Hot Gas Desulfurization) process consist of a fast fluidized bed type desulfurizer (6.2 m tall pipe of 0.015 m i.d), a bubbling fluidized bed type regenerator (1.6 m tall bed of 0.053 m i.d), a loop-seal and the pressure control valves. The solid circulation rate was measured by varying the slide-gate opening positions, the gas velocities and temperatures of the desulfurizer and the voidage in the desulfurizer was derived by the same way. At the same gas velocities and the same opening positions of the slide gate, the solid circulation rate, which was similar at the temperature of $300^{\circ}C$ and $550^{\circ}C$, was low at those temperatures compared with a room temperature. The voidage in the desulfurizer showed a fast fluidized bed type when the opening positions of the slide gate were 10~20% while that showed a turbulent fluidized bed type when those of slide gate were 30~40%. The reaction characteristics of Zn-based solid sorbent were investigated by different desulfurization temperatures at 20 atm in the continuous operation. The $H_2S$ removal efficiency tended to decrease below the desulfurization temperature of $450^{\circ}C$. Thus, the 10 hour continuous operation has been performed at the desulfurization temperature of $500^{\circ}C$ in order to maintain the high $H_2S$ removal efficiency. During 10 hour continuous operation, the $H_2S$ removal efficiency was above 99.99% because the $H_2S$ concentration after desulfurization was not detected at the inlet $H_2S$ concentration of 5,000 ppmv condition using UV analyzers (Radas2) and the detector tube (GASTEC) which lower detection limit is 1 ppmv.

Selective Separation of $CO_2/CH_4$ by Pore Structure Modification of Activated Carbon Fiber (활성탄소섬유의 기공구조 변형을 이용한 $CO_2/CH_4$의 선택적 분리 기술)

  • Moon, S.H.;Park, S.Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1027-1034
    • /
    • 2007
  • This research was focused on the selective separation of $CO_2$ or $CH_4$ from mixture of these gases, by controlling the size of pore or pore gate. Pitch based activated carbon fibers(ACF) were used as adsorbents. The size of pore gate was controlled by the molecule having similar size to that of pore opening. After the adsorption of adsorbate on pore surface, planar molecules such as benzene and naphthalene covered the pore gate. The slow release of adsorbate from the pores covered by planar molecules makes apertures between planar molecules covering pore gate and this structure can be fixed by rapid pyrolysis. The control of pore gate using benzene as covering molecules could not accomplished due to the simultaneous volatilization of benzene and adsorbate$(CO_2)$ caused by similar temperatures of benzene volatilization and adsorbate desorption. Therefore we replaced benzene with naphthalene looking for the stability at a $CO_2$ desorption temperature. The naphthalene molecule was adsorbed on the ACF up to 15% of ACF weight and showed no desorption until $100^{\circ}C$, indicating that the molecule could be used as a good cover molecule. Naphthalene could cover almost all the pore gate, reducing BET surface area from 753 $m^2/g$ to 0.7 $m^2/g$. A mixed gas$(CO_2:CH_4=50:50)$ was adsorbed on the naphthalene treated OG-7A ACF. The amount of $CO_2$ adsorption increased with total pressure, whileas thai of $CH_4$ was not so much influenced on the pressure, indicating that $CO_2$ made more compounds on the ACF surface along with total pressure increase. The most $CO_2$ and the least $CH_4$ were adsorbed in the condition of 0.4 atm, resulting in the highly pure $CH_4$ left in ACF.

Mesothermal Gold Vein Mineralization of the Seolhwa Mine: Fluid Inclusion and Sulfur Isotope Studies (설화 광산의 중열수 금광화작용: 유체포유물 및 황동위원소 연구)

  • Yun, Seong-Taek;So, Chil-Sup;Choi, Seon-Gyu;Choi, Sang-Hoon;Heo, Chul-Heo
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.278-291
    • /
    • 2001
  • Mesothermal gold vein minerals of the Seolhwa mine were deposited in a single stage of massive quartz veins which filled the mainly NE-trending fault shear zones exclusively in the granitoid of the Gyeonggi Massif. The Seolhwa mesothermal gold mineralization is spatially associated with the Jurassic granitoid of 161 Ma. The vein quartz contains three main types of fluid inclusions at 25$^{\circ}$C: 1) low-salinity (< 5 wt.% NaCl), liquid CO$_{2}$-bearing, type IV inclusion; 2) gas-rich (> 70 vol.%), aqueous type II inclusions; 3) aqueous type I inclusions (0${\sim}$15 wt.% NaCl) containing small amounts of CO$_{2}$. The H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl inclusions represent immiscible fluids trapped earlier along the solvurs curve at temperatures from 430$^{\circ}$ to 250$^{\circ}$C and pressures of 1 kbars. Detailed fluid inclusion chronologies may suggest a progressive decrease in pressure during the auriferous mineralization. The aqueous inclusion fluids represent either later fluids evelved through extensive fluid unmixing (CO$_{2}-CH$_{4}$ effervescence) from a homogeneous H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters possibly related to uplift and unloading of the mineralizing suites. The initial fluids were homogeneous containing H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl components and the following properties: the initital temperature of >250$^{\circ}$ to 430$^{\circ}$C, X$_{CO}\;_{2}$ of 0.16 to 0.62, 5 to 14 mole% CH$_{4}$, 0.06 to 0.3 mole% N$_{2}$ and salinities of 0.4 to 4.9 wt.% NaCl. The T-X data for the Seolhwa gold mine may suggest that the Seolhwa auriferous hydrothermal system has been probably originated from adjacent granitic melt which facilitated the CH$_{4}$ formation and resulted in a reduced fluid state evidenced by the predominance of pyrrhotite. The dominance of negative ${\delta}\;^{34}$S values of sulfides (-0.6 to 1.4$%_o$o) are consistent with their deep igneous source.

  • PDF