• 제목/요약/키워드: 가버 웨이블릿

검색결과 6건 처리시간 0.021초

가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식 (Iris Recognition using Gabor Wavelet and Fuzzy LDA Method)

  • 고현주;권만준;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1147-1155
    • /
    • 2005
  • 본 논문은 단순한 형태의 개인 착인 및 검증방법의 한계를 극복하여 절도나 누출에 의해 도용될 수 없고 변경되거나 분실할 위험성이 없는 새로운 형태의 인증 방법인 홍채인식을 연구하였다. 사람의 홍채는 태어날 때 한번 정해지면 평생 변화하지 않는 특성을 가지고 있으며, 개개인별로 모양이 모두 다른 것으로 알려져 있다. 이에, 본 논문에서는 홍채영상 취득 시 조명에 의한 동공의 크기 변화에 민감하지 않은 2차원의 홍채패턴을 취득하여, 2차 가버 웨이블릿과 퍼지 선형판별분석기법(LDA)을 이용하여 특징 벡터를 추출하고 인식한다. 인식과정에서는 상관관계 계수를 이용하여 다른 홍채의 특징간과 매칭값을 측정하고 유사도가 가장 큰 대상을 찾게 된다. 이때, 입력영상에 대하여 4개 방향의 가버 웨이블릿을 거쳐 얻어진 4개의 상관관계 계수 간 중 가장 큰 값을 갖는 대상자를 인식 대상자로 선정하므로 오인식될 확률을 최소화 할 수 있다. 제안한 알고리듬의 유용성을 확인하기 위해 대상자 50명에 대하여 각각 6회씩 촬영한 두 가지 데이타베이스(CASIA, CBNU)를 이용하였으며, 실험 결과 $90\%$ 이상의 인식률을 얻었다.

가버 웨이블릿 신경망 기반 적응 표정인식 시스템 (Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network)

  • 이상완;김대진;김용수;변증남
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 본 논문에서는 6개의 특징점을 이용하는 가버 웨이블릿 신경망 기반 적응 표정인식 시스템을 제안한다. 특징 추출부를 포함하는 초기 네트워크의 구성은 Levenberg-Marquardt 기반의 학습방법이 사용되며, 따라서 특징 추출부 결정에 있어서 경험적 요소를 배재시킬 수 있다. 또한 새로운 사용자에 대한 적응 네트워크를 구성하기 위해서 개선된 보상함수를 가지는 Q-학습과, 비지도 퍼지 신경망 모델을 사용하였다. Q-학습을 통해서는 개인 사용자에 대해 분리도가 좋은 특징벡터를 얻을 수 있는 가버필터 세트를 얻을 수 있으며, 퍼지 신경망을 통해서는 사용자의 얼굴변화에 맞게 인식기를 변화시킬 수 있다. 따라서 제안된 시스템은 사용자의 얼굴변화를 따라갈 수 있는 좋은 적응 성능을 보이고 있다.

표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템 (Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features)

  • 윤현섭;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.821-827
    • /
    • 2009
  • 표정은 인간의 감정을 전달할 수 있는 중요한 수단으로 표정 인식은 감정상태를 알아낼 수 있는 효과적인 방법중 하나이다. 일반적인 표정 인식 시스템은 얼굴 표정을 표현하는 특징점을 찾고, 물리적인 해석 없이 특징을 추출한다. 하지만 특징점 추출은 많은 시간이 소요될 뿐 아니라 특징점의 정확한 위치를 추정하기 어렵다. 그리고 표정 인식 시스템을 실시간 임베디드 시스템에서 구현하기 위해서는 알고리즘을 간략화하고 자원 사용량을 줄일 필요가 있다. 본 논문에서 제안하는 실시간 표정 인식 시스템은 격자점 위치에서 얻어진 가버 웨이블릿(Gabor wavelet) 특징 기반 표정 공간을 설정하고, 각 표정 공간에서 얻어진 주성분을 신경망 분류기를 이용하여 얼굴 표정을 분류한다. 제안하는 실시간 표정 인식 시스템은 화남, 행복, 평온, 슬픔 그리고 놀람의 5가지 표정이 인식 가능하며, 다양한 실험에서 평균 10.25ms의 수행시간, 그리고 87%~93%의 인식 성능을 보였다.

가버 웨이블릿을 이용한 원시 시각 피질 모델 구현에 관한 연구 (Study on the Implementation of Primitive Visual Cortex Model in Retina Using Gabor Wavelet)

  • 이영석
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.477-482
    • /
    • 2020
  • 인간의 시각피질의 특징은 특별한 방향성을 갖거나 시간적인 주파수 변화를 동반하는 자극에는 민감하게 반응하지만, 공간 위상의 선택적 자극에는 둔감하게 작용한다는 것이 고등 포유동물의 시각 피질에 대한 생리학적 실험으로 증명되었다. 이 결과는 위치에 민감한 단순 세포의 분포가 복잡 세포의 분포에 비하여 상대적으로 적은 생리학적 특징에 기인한 것으로 본 논문에서는 원시 시각 피질을 구성하는 단순 세포와 복잡 세포 가운데 더 넓은 분포의 복잡 세포 모델링을 가버 웨이블릿 변환을 이용한 영상추정 반복 알고리즘을 이용하여 구현하였다. 구현된 모델은 영상의 경계 및 모서리의 검출 평가와 함께 기존의 생리학적 실험논문과 구현한 모델의 결과 사이의 일관성을 확인하였다. 구현된 모델은 단순 세포와 복잡 세포가 함께 분포하는 망막의 수용 장을 완전한 형태를 구현할 수 없는 제한이 있지만, 시각 피질을 일부를 담당하는 복잡 세포를 알고리즘의 관점에서 구현하여 더 완전한 시각 피질 모델의 기초로 활용할 수 있다.

3D 모델과 가버 웨이블릿을 이용한 특징점 검출 (Landmark Detection Using 3D Gobor Wavelet)

  • 김대환;오두식;전승선;김재민;조성원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2007
  • In this paper, we propose an automatic method to finding corresponding points. One 2D image can be changed 3D shape by 3D model. The main idea is using gabor wavelet values from 3D model. And Elastic Bunch Graph Matching algorithm is more stable in 3D model.

  • PDF

임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가 (Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions)

  • 심동규
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.287-295
    • /
    • 2006
  • 본 논문은 임의의 영역 안에 존재하는 텍스처를 검색하기 위한 wavelet과 Gabor기반 텍스처 표현 기법을 제안하고 이들의 검색성능을 평가한다. 지금까지 Gator 평면에서의 평균과 표준편차 특징 기술자가 직사각형안의 텍스처를 표현하기에 가장 적합한 것으로 알려져 있다. 하지만 임의의 영역 안의 물체를 표현하는 기술이 실제 검색이나 여러 다른 텍스처 표현 응용 예에 더욱 필요한 실정이다. 본 연구에서는 wavelet과 Gabor 필터에 기반한 특징 추출법을 제안하고 이들을 실제 텍스처 데이터 베이스에 적용해 본 결과, wavelet기반 특징 기술자가 Gator기반 기술자에 비하여 더욱 효과적임을 발견하였다. 특히 wavelet평면에서 표준편차와 엔트로피 특징을 사용함으로써 가장 좋은 검색 성능을 냄을 알 수 있었다. 또한, 본 논문에서는 다양한 실제 텍스처 영상을 가지고 wavelet과 Gator에 기반한 다양한 특징벡터에 따른 검객 성능을 평가하였다.

  • PDF