Abstract
In this paper, adaptive Facial Emotional Recognition system based on Gabor Wavelet Neural Network, considering six feature Points in face image to extract specific features of facial expression, is proposed. Levenberg-Marquardt-based training methodology is used to formulate initial network, including feature extraction stage. Therefore, heuristics in determining feature extraction process can be excluded. Moreover, to make an adaptive network for new user, Q-learning which has enhanced reward function and unsupervised fuzzy neural network model are used. Q-learning enables the system to ge optimal Gabor filters' sets which are capable of obtaining separable features, and Fuzzy Neural Network enables it to adapt to the user's change. Therefore, proposed system has a good on-line adaptation capability, meaning that it can trace the change of user's face continuously.
본 논문에서는 6개의 특징점을 이용하는 가버 웨이블릿 신경망 기반 적응 표정인식 시스템을 제안한다. 특징 추출부를 포함하는 초기 네트워크의 구성은 Levenberg-Marquardt 기반의 학습방법이 사용되며, 따라서 특징 추출부 결정에 있어서 경험적 요소를 배재시킬 수 있다. 또한 새로운 사용자에 대한 적응 네트워크를 구성하기 위해서 개선된 보상함수를 가지는 Q-학습과, 비지도 퍼지 신경망 모델을 사용하였다. Q-학습을 통해서는 개인 사용자에 대해 분리도가 좋은 특징벡터를 얻을 수 있는 가버필터 세트를 얻을 수 있으며, 퍼지 신경망을 통해서는 사용자의 얼굴변화에 맞게 인식기를 변화시킬 수 있다. 따라서 제안된 시스템은 사용자의 얼굴변화를 따라갈 수 있는 좋은 적응 성능을 보이고 있다.