• Title/Summary/Keyword: 傳記

Search Result 106,460, Processing Time 0.111 seconds

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

Detecting Adversarial Example Using Ensemble Method on Deep Neural Network (딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구)

  • Kwon, Hyun;Yoon, Joonhyeok;Kim, Junseob;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • Deep neural networks (DNNs) provide excellent performance for image, speech, and pattern recognition. However, DNNs sometimes misrecognize certain adversarial examples. An adversarial example is a sample that adds optimized noise to the original data, which makes the DNN erroneously misclassified, although there is nothing wrong with the human eye. Therefore studies on defense against adversarial example attacks are required. In this paper, we have experimentally analyzed the success rate of detection for adversarial examples by adjusting various parameters. The performance of the ensemble defense method was analyzed using fast gradient sign method, DeepFool method, Carlini & Wanger method, which are adversarial example attack methods. Moreover, we used MNIST as experimental data and Tensorflow as a machine learning library. As an experimental method, we carried out performance analysis based on three adversarial example attack methods, threshold, number of models, and random noise. As a result, when there were 7 models and a threshold of 1, the detection rate for adversarial example is 98.3%, and the accuracy of 99.2% of the original sample is maintained.

Air Density Measurement in a Narrow Test Section Using a Laser Absorption Spectroscopy (레이저 흡수 분광법을 사용한 좁은 시험 구간 내 공기 밀도 측정)

  • Shim, Hanseul;Jung, Sion;Kim, Gyeongrok;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.893-900
    • /
    • 2021
  • In this study, air density in a narrow test section is measured using a laser absorption spectroscopy system that detects oxygen absorption lines. An absorption line pair at 13156.28 and 13156.62 cm-1 are detected. A gas chamber with a height of 40 mm is used as a narrow test section. A triangular spiral-shaped laser path is applied in the gas chamber to amplify absorption strength by extending laser beam path length. A well-known logarithm amplifier and a secondary amplifier are used to electrically amplify absorption signal. An AC-coupling is applied after the logarithm amplifier for signal saturation prevention and noise suppression. Procedure of calculating spectral absorbance from output signal is introduced considering the logarithm amplifier circuit configuration. Air density is determined by fitting the theoretically calculated spectral absorbance to the measured spectral absorbance. Test conditions with room temperature and a pressure range of 10~100 kPa are made in a gas chamber using a Bourdon pressure gauge. It is confirmed that air density in a narrow test section can be measured within a 16 % error through absorption signal amplification using a triangular spiral-shaped beam path and a logarithm amplifier.

Evaluation of high power ultrasonic energy transmission characteristics of a liquid matching layer by using sonoluminescence (소노루미네센스를 이용한 액체정합층의 고출력 초음파에너지 전달특성 평가)

  • Kim, Jungsoon;Kim, Haeun;Son, Jinyoung;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.408-416
    • /
    • 2021
  • In the ultrasonic dispersion, in order to avoid direct contact of the radiation surface of ultrasonic transducers with a liquid sample, the liquid sample is separated by a glass container and it receives ultrasonic energy through an acoustic medium. The transmission efficiency of the ultrasonic energy in the multi-layered ultrasonic system is an important factor. In this study, we suggested a method that can improve the ultrasonic energy transfer efficiency by using a propylene glycol solution as a liquid matching layer in the multi-layered acoustic system. In this method, a propylene glycol solution was filled between the Langevin-type ultrasonic transducer and the luminol solution and the sonoluminescence phenomena in the luminol solution, which is caused by nonlinear effect of high power ultrasound radiated from the transducer, was examined by using a Photo Multiplier Tube (PMT). The transmission efficiency depending on the concentration of propylene glycol solution was observed, and we can see that as the concentration of the propylene glycol solution increased, the matching effect increased while the acoustic attenuation increased. It was confirmed that there is an optimal concentration compromised these two conflicting conditions, and the optimum concentration of the propylene glycol solution was determined experimentally.

Development of Eco-friendly Combustion Process for Waste 2,4,6-trinitrotoluene (폐 2,4,6-trinitrotoluene의 환경 친화적 연소처리공정 개발)

  • Kim, Tae Ho;An, Il Ho;Kim, Jong Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.247-254
    • /
    • 2021
  • In this study, an eco-friendly combustion process of waste 2,4,6-trinitrotoluene (TNT: 2,4,6-trinitrotoluene) was developed, and fundamental data for the quantity of the organic matter in the final combustion residues is presented. Because complete combustion of TNT is not possible theoretically, the combustion process was optimized to reduce organic matter content in the combustion residue by performing measures such as heating time changes, addition of propellant material, and after treatment using a high-temp electrical furnace. From the results, it was confirmed that the organic matter content in the residue could be decreased to 7 ~ 10% with each method. The quantity of the organic matter could be minimized by optimizing the combustion conditions of the process. With only a combustion time increase, the amount of organic matter in the combustion residues was measured at about 9 wt%. The environmental friendliness of the final exhaust gas was also confirmed by real time gas component analyses. In addition, the organic contents could be reduced by a further 2 wt% by applying an additional heat treatment using an external electric furnace after the first incineration treatment. In the combustion process of propellant added waste TNT, it was found that various TNT wastes could be treated using the same eco-friendly protocols because the organic content in the residue decreased in accordance with the amount of propellant. The amount of the organic matter content produced by all these methods fulfilled the requirements under the Waste Management Act.

Analysis and Improvement of Utilization Status through GPS Data Analysis of Shared Electric Kickboard in Wirye New Town (위례 신도시 공유 전동 킥보드 GPS데이터 분석을 통한 이용실태 분석 및 개선사항)

  • Hong, Seok-Do;You, Yen-Yoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.471-476
    • /
    • 2021
  • Personal mobility (PM) is a new concept of transportation used by one or two people using electricity. Personal transportation aims to move quickly and conveniently over an ambiguous distance that is too close to the destination and too far to walk. In particular, as electric kickboard sharing services have become more common in recent years, they are receiving great popularity from citizens. However, it is necessary to come up with an alternative solution as it is acting as a risk not only to users but also to pedestrians and road drivers. Therefore, in order to present measures to establish and improve a safe personal mobility utilization environment, this research was conducted as follows. First, based on GPS data from shared electric kickboards, the usage status in everyday life was examined and analyzed in detail. Second, it is convenient to rent and return shared electric kickboards directly to applications regardless of time, and it is highly accessible to rent them from their location and reach their destination. Based on these findings, this study suggests that careful access to rental and return could have a more positive effect on users and pedestrians by installing a cradle in a place where there is more use than disorderly device placement and expansion.

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine (생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구)

  • Kim, Byung Joo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.662-670
    • /
    • 2021
  • Interstitial cells of Cajal (ICCs) are the pacemaking cells in the gastrointestinal (GI) muscles that generate the rhythmic oscillation in membrane potentials known as slow waves. In the present study, we investigated the effects of mirtazapine, a noradrenergic and serotonergic antidepressant, on pacemaking potential in cultured ICCs from the murine small intestine. The whole-cell patch-clamp configuration was used to record pacemaker potential in cultured ICCs. Mirtazapine induced pacemaker potential depolarizations in a concentration-dependent manner in the current clamp mode. Y25130 (a 5-HT3 receptor antagonist), RS39604 (a 5-HT4 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effects on mirtazapine-induced pacemaker potential depolarizations. Also, methoctramine, a muscarinic M2 receptor antagonist, had no effect on mirtazapine-induced pacemaker potential depolarizations, whereas 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a muscarinic M3 receptor antagonist, inhibited the depolarizations. When guanosine 5'-[β-thio] diphosphate (GDP-β-S; 1 mM) was in the pipette solution, mirtazapine-induced pacemaker potential depolarization was blocked. When an external Ca2+ free solution or thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was applied, the generation of pacemaker potentials disappeared, and under these conditions, mirtazapine induced pacemaker potential depolarizations. In addition, protein kinase C (PKC) inhibitor, calphostin C, and chelerythrine inhibited mirtazapine-induced pacemaker potential depolarizations. These results suggest that mirtazapine regulates pacemaker potentials through muscarinic M3 receptor activation via a G protein-dependent and an external or internal Ca2+-independent PKC pathway in the ICCs. Therefore, mirtazapine can control GI motility through ICCs.