• Title/Summary/Keyword: *-paranormal operators

Search Result 25, Processing Time 0.017 seconds

(m, n)-PARANORMAL OPERATORS AND (m, n)-PARANORMAL OPERATORS

  • Dharmarha, Preeti;Ram, Sonu
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.151-159
    • /
    • 2020
  • We introduce the notion of (m, n)-paranormal operators and (m, n)-paranormal operators on Hilbert space and study their properties. We also characterize these operators. Examples of operators are given which are (m, n)-paranormal but not (m, n)-paranormal, and vice-versa.

SOME CLASSES OF OPERATORS RELATED TO (m, n)-PARANORMAL AND (m, n)*-PARANORMAL OPERATORS

  • Shine Lal Enose;Ramya Perumal;Prasad Thankarajan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1075-1090
    • /
    • 2023
  • In this paper, we study new classes of operators k-quasi (m, n)-paranormal operator, k-quasi (m, n)*-paranormal operator, k-quasi (m, n)-class 𝒬 operator and k-quasi (m, n)-class 𝒬* operator which are the generalization of (m, n)-paranormal and (m, n)*-paranormal operators. We give matrix characterizations for k-quasi (m, n)-paranormal and k-quasi (m, n)*-paranormal operators. Also we study some properties of k-quasi (m, n)-class 𝒬 operator and k-quasi (m, n)-class 𝒬* operators. Moreover, these classes of composition operators on L2 spaces are characterized.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.

ON n-*-PARANORMAL OPERATORS

  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.549-565
    • /
    • 2016
  • A Hilbert space operator $T{\in}{\mathfrak{B}}(\mathfrak{H})$ is said to be n-*-paranormal, $T{\in}C(n)$ for short, if ${\parallel}T^*x{\parallel}^n{\leq}{\parallel}T^nx{\parallel}\;{\parallel}x{\parallel}^{n-1}$ for all $x{\in}{\mathfrak{H}}$. We proved some properties of class C(n) and we proved an asymmetric Putnam-Fuglede theorem for n-*-paranormal. Also, we study some invariants of Weyl type theorems. Moreover, we will prove that a class n-* paranormal operator is finite and it remains invariant under compact perturbation and some orthogonality results will be given.

Conditions on Operators Satisfying Weyl's Theorem

  • Kim, An-Hyun
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • In this note it is shown that if T satisfies ($G_{1}$)-condition with finite spectrum then Weyl's theorem holds for T. If T is totally *-paranormal then $T-{\lambda}$ has finite ascent for all ${\lambda}{\in}{\mathbb{C}},\;T$ is isoloid, and Weyl's theorem holds for T.

  • PDF

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS

  • Kim, An-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.565-570
    • /
    • 2012
  • In this note we investigate Weyl's theorem for *-paranormal operators on a separable infinite dimensional Hilbert space. We prove that if T is a *-paranormal operator satisfying Property $(E)-(T-{\lambda}I)H_T(\{{\lambda}\})$ is closed for each ${\lambda}{\in}{\mathbb{C}}$, where $H_T(\{{\lambda}\})$ is a local spectral subspace of T, then Weyl's theorem holds for T.