• Title/Summary/Keyword: *-class A operator

Search Result 281, Processing Time 0.021 seconds

ON SPECTRAL CONTINUITIES AND TENSOR PRODUCTS OF OPERATORS

  • Kim, In Hyoun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.113-119
    • /
    • 2011
  • Let T be a bounded linear operator on a complex Hilbert space $\mathcal{H}$. An operator T is called class A operator if ${\left|{T^2}\right|}{\geq}{\left|{T^2}\right|}$ and is called class A(k) operator if $({T^*\left|T\right|^{2k}T})^{\frac{1}{k+1}}{\geq}{\left|T\right|}^2$. In this paper, we show that ${\sigma}$ is continuous when restricted to the set of class A operators and consider the tensor products of class A(k) operators.

INCLUSION PROPERTIES OF A CLASS OF FUNCTIONS INVOLVING THE DZIOK-SRIVASTAVA OPERATOR

  • Devi, Satwanti;Srivastava, H.M.;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.139-168
    • /
    • 2016
  • In this work, we rst introduce a class of analytic functions involving the Dziok-Srivastava linear operator that generalizes the class of uniformly starlike functions with respect to symmetric points. We then establish the closure of certain well-known integral transforms under this analytic function class. This behaviour leads to various radius results for these integral transforms. Some of the interesting consequences of these results are outlined. Further, the lower bounds for the ratio between the functions f(z) in the class under discussion, their partial sums $f_m(z)$ and the corresponding derivative functions f'(z) and $f^{\prime}_m(z)$ are determined by using the coecient estimates.

ON k-QUASI-CLASS A CONTRACTIONS

  • Jeon, In Ho;Kim, In Hyoun
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.85-89
    • /
    • 2014
  • A bounded linear Hilbert space operator T is said to be k-quasi-class A operator if it satisfy the operator inequality $T^{*k}{\mid}T^2{\mid}T^k{\geq}T^{*k}{\mid}T{\mid}^2T^k$ for a non-negative integer k. It is proved that if T is a k-quasi-class A contraction, then either T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative operator $D=T^{*k}({\mid}T^2{\mid}-{\mid}T{\mid}^2)T^k$ is strongly stable.

ON QUASI-A(n, κ) CLASS OPERATORS

  • Lee, Mi Ryeong;Yun, Hye Yeong
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.741-750
    • /
    • 2013
  • To study the operator inequalities, the notions of class A operators and quasi-class A operators are developed up to recently. In this paper, quasi-$A(n,{\kappa})$ class operator for $n{\geq}2$ and ${\kappa}{\geq}0$ is introduced as a new notion, which generalizes the quasi-class A operator. We obtain some structural properties of these operators. Also we characterize quasi-$A(n,{\kappa})$ classes for n and ${\kappa}$ via backward extension of weighted shift operators. Finally, we give a simple example of quasi-$A(n,{\kappa})$ operators with two variables.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

ON MAXIMAL OPERATORS BELONGING TO THE MUCKENHOUPT'S CLASS $A_1$

  • Suh, Choon-Serk
    • East Asian mathematical journal
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • We study a maximal operator defined on spaces of homogeneous type, and we prove that this operator is of weak type (1,1). As a consequence we show that the maximal operator belongs to the Muckenhoupt's class $A_1$.

  • PDF

CONTINUITY OF THE SPECTRUM ON A CLASS A(κ)

  • Jeon, In Ho;Kim, In Hyoun
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2013
  • Let T be a bounded linear operator on a complex Hilbert space $\mathfrak{H}$. An operator T is called class A operator if ${\mid}T^2{\mid}{\geq}{\mid}T{\mid}^2$ and is called class $A({\kappa})$ operator if $(T^*{\mid}T{\mid}^{2{\kappa}}T)^{\frac{1}{{\kappa}+1}}{\geq}{\mid}T{\mid}^2$ for a positive number ${\kappa}$. In this paper, we show that ${\sigma}$ is continuous when restricted to the set of class $A({\kappa})$ operators.

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi;Braha, Naim Latif
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1089-1104
    • /
    • 2014
  • An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

FUGLEDE-PUTNAM THEOREM FOR p-HYPONORMAL OR CLASS y OPERATORS

  • Mecheri, Salah;Tanahashi, Kotaro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.747-753
    • /
    • 2006
  • We say operators A, B on Hilbert space satisfy Fuglede-Putnam theorem if AX = X B for some X implies $A^*X=XB^*$. We show that if either (1) A is p-hyponormal and $B^*$ is a class y operator or (2) A is a class y operator and $B^*$ is p-hyponormal, then A, B satisfy Fuglede-Putnam theorem.

PROPERTIES OF OPERATOR MATRICES

  • An, Il Ju;Ko, Eungil;Lee, Ji Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.893-913
    • /
    • 2020
  • Let 𝓢 be the collection of the operator matrices $\(\array{A&C\\Z&B}\)$ where the range of C is closed. In this paper, we study the properties of operator matrices in the class 𝓢. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class 𝓢 and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class 𝓢, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl's theorem and a-Browder's theorem, respectively.