• 제목/요약/키워드: (p, q)-Bernoulli polynomials

검색결과 21건 처리시간 0.026초

A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS

  • Ryoo, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.587-597
    • /
    • 2017
  • In this paper we define the (p, q)-analogue of Bernoulli numbers and polynomials by generalizing the Bernoulli numbers and polynomials, Carlitz's type q-Bernoulli numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Bernoulli numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli polynomials by using computer.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • 대한수학회지
    • /
    • 제51권5호
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V.;Kim, T.
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.519-527
    • /
    • 2011
  • Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

A STUDY ON DEGENERATE (p, q, h)-BERNOULLI POLYNOMIALS AND NUMBERS

  • HUI YOUNG LEE
    • Journal of applied mathematics & informatics
    • /
    • 제42권5호
    • /
    • pp.1145-1153
    • /
    • 2024
  • This paper introduces a more generalized form of the degenerated q-Bernoulli polynomial, termed (p,q)-Bernoulli polynomial, and presents their properties. Various properties including symmetry were investigated, yet properties of symmetry were not identified. However, in the process, another property was discovered, and the purpose is to introduce this newly found property.

A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.145-157
    • /
    • 2020
  • In this article, we define a generating function of the generalized (p, q)-poly-Bernoulli polynomials with variable a by using the polylogarithm function. From the definition, we derive some properties that is concerned with other numbers and polynomials. Furthermore, we construct a special functions and give some symmetric identities involving the generalized (p, q)-poly-Bernoulli polynomials and power sums of the first integers.

IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.601-609
    • /
    • 2020
  • In this paper, we introduce degenerate generalized poly-Bernoulli numbers and polynomials with (p, q)-logarithm function. We find some identities that are concerned with the Stirling numbers of second kind and derive symmetric identities by using generalized falling factorial sum.

A NOTE ON (p, q)-ANALOGUE TYPE OF FROBENIUS-GENOCCHI NUMBERS AND POLYNOMIALS

  • Khan, Waseem A.;Khan, Idrees A.
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.13-24
    • /
    • 2020
  • The main purpose of this paper is to introduce Apostol type (p, q)-Frobenius-Genocchi numbers and polynomials of order α and investigate some basic identities and properties for these polynomials and numbers including addition theorems, difference equations, derivative properties, recurrence relations. We also obtain integral representations, implicit and explicit formulas and relations for these polynomials and numbers. Furthermore, we consider some relationships for Apostol type (p, q)-Frobenius-Genocchi polynomials of order α associated with (p, q)-Apostol Bernoulli polynomials, (p, q)-Apostol Euler polynomials and (p, q)-Apostol Genocchi polynomials.