• 제목/요약/키워드: (LCS)_n$-manifold

검색결과 10건 처리시간 0.02초

SOME RESULTS ON (LCS)n-MANIFOLDS

  • Shaikh, Absos Ali
    • 대한수학회지
    • /
    • 제46권3호
    • /
    • pp.449-461
    • /
    • 2009
  • The object of the present paper is to study $(LCS)_n$-manifolds. Several interesting results on a $(LCS)_n$-manifold are obtained. Also the generalized Ricci recurrent $(LCS)_n$-manifolds are studied. The existence of such a manifold is ensured by several non-trivial new examples.

SEMI-INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLD

  • Bagewadi, Channabasappa Shanthappa;Nirmala, Dharmanaik;Siddesha, Mallannara Siddalingappa
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1331-1339
    • /
    • 2018
  • In this paper the decomposition of basic equations of $(LCS)_n$-manifolds is carried out into horizontal and vertical projections. Further, we study the integrability of the distributions $D,D{\oplus}[{\xi}]$ and $D^{\perp}$ totally geodesic of semi-invariant submanifolds of $(LCS)_n$-manifold.

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.

PSEUDOPARALLEL INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS

  • Atceken, Mehmet;Yildirim, Umit;Dirik, Suleyman
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.275-284
    • /
    • 2020
  • The aim of this paper is to study the invariant submanifolds of (LCS)n-manifolds. We study pseudo parallel, generalized Ricci-pseudo parallel and 2-pseudo parallel invariant submanifolds of a (LCS)n-manifold and get the necessary and sufficient conditions for an invariant submanifold to be totally geodesic and give some new results contribute to differential geometry.

CHARACTERIZATION OF WARPED PRODUCT SUBMANIFOLDS OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Hui, Shyamal Kumar;Pal, Tanumoy;Piscoran, Laurian Ioan
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1303-1313
    • /
    • 2019
  • Recently Hui et al. ([8,9]) studied contact CR-warped product submanifolds and also warped product pseudo-slant submanifolds of a $(LCS)_n$-manifold $\bar{M}$. The characterization for both these classes of warped product submanifolds have been studied here. It is also shown that there do not exists any proper warped product bi-slant submanifold of a $(LCS)_n$-manifold. Although the existence of a bi-slant submanifold of $(LCS)_n$-manifold is ensured by an example.

RICCI SOLITONS ON RICCI PSEUDOSYMMETRIC (LCS)n-MANIFOLDS

  • Hui, Shyamal Kumar;Lemence, Richard S.;Chakraborty, Debabrata
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.325-346
    • /
    • 2018
  • The object of the present paper is to study some types of Ricci pseudosymmetric $(LCS)_n$-manifolds whose metric is Ricci soliton. We found the conditions when Ricci soliton on concircular Ricci pseudosymmetric, projective Ricci pseudosymmetric, $W_3$-Ricci pseudosymmetric, conharmonic Ricci pseudosymmetric, conformal Ricci pseudosymmetric $(LCS)_n$-manifolds to be shrinking, steady and expanding. We also construct an example of concircular Ricci pseudosymmetric $(LCS)_3$-manifold whose metric is Ricci soliton.