Slant Submanifolds of $(L C S)_{n}$-manifolds

Shiv Sharma Shukla* and Mukesh Kumar Shukla
Department of Mathematics, University of Allahabad, Allahabad-211002, India
e-mail: ssshukla_au@rediffmail.com and mukesh_mathau@rediffmail.com
Rajendra Prasad
Department of Mathematics and Astronomy, University of Lucknow, Lucknow226007, India
e-mail: rp_manpur@rediffmail.com

Abstract. In this article, we study slant and semi-slant submanifolds of $(L C S)_{n}$ manifolds. Integrability conditions of distributions involved in definition of semi-slant submanifolds of a $(L C S)_{n}$-manifold have been obtained.

1. Introduction

The study of slant immersions was initiated by B.Y. Chen [4]. A. Lotta [16], introduced and studied slant submanifolds of an almost contact metric manifold. He also studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds of K-contact manifolds [17]. In 2000, Cabrerizo et al. studied slant submanifolds of a Sasakian manifold and obtained many interesting results. They also gave several examples of slant submanifolds of a Sasakian manifold [6]. The study of semi-slant submanifolds was initiated by Papaghiuc [20]. Semi-slant submanifolds are generalized version of CR-submanifolds. In 1999, Cabrerizo et al. [5] studied semi-slant submanifolds of a Sasakian manifold. In [14], authors studied semi-slant submanifolds of a trans-Sasakian manifold. On the otherhand, in 2003 [22], A.A. Shaikh introduced the notion of Lorentzian concircular structure manifolds (briefly $(L C S)_{n}$-manifolds)and proved its existence by several examples and found its applications to the general relativity and cosmology in [24] and [25]. He also studied some results on $(L C S)_{n}$-manifolds in [23]. $(L C S)_{n}$-manifolds are generalization of LP-Sasakian manifolds introduced by Matsumoto [18]. In [11], S.K. Hui and M. Atceken studied contact warped product semi-slant submanifolds of $(L C S)_{n}$ manifolds. Again, in [1], M. Atceken obtained some interesting results on invariant

[^0]submanifolds of $(L C S)_{n}$-manifolds.Thus motivated sufficiently, in this paper, we study slant and semi-slant submanifolds of a $(L C S)_{n}$-manifold. We observe that the metric induced on a submanifold of a $(L C S)_{n}$-manifold may be either degenerate or non-degenerate. In this article, we focus our attention on non-degenerate submanifolds of $(L C S)_{n}$-manifolds.

2. Preliminaries

Let \bar{M} be an n-dimensional real differentiable manifold of differentiability class C^{∞} endowed with a $(1,1)$ tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and a Lorentzian metric g of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} \bar{M} \times T_{p} \bar{M} \rightarrow \mathbb{R}$ is a non-degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} \bar{M}$ denotes the tangent vector space of \bar{M} at p and \mathbb{R} is the real number space, which satisfies

$$
\begin{array}{ll}
(2.1) & \eta(\xi)=-1 \\
(2.2) & \phi^{2} X=X+\eta(X) \xi \\
(2.3) & g(X, \xi)=\eta(X) \\
(2.4) & g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}
\end{array}
$$

for all vector fields X and Y on \bar{M}. Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold \bar{M} with a Lorentzian paracontact structure is called a Lorentzian paracontact manifold [18]. Since a Lorentzian metric g is of index 1, Lorentzian manifold has not only spacelike vector fields but also timelike and lightlike vector fields. A non-zero vector $u \in T_{p} \bar{M}$ is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies $g_{p}(u, u)<0($ resp $., \leq 0,=0,>0)$.

Definition 2.1. In a Lorentzian manifold (\bar{M}, g), a vector field P defined by $g(X, P)=A(X)$, for any $X \in \chi(M)$, is said to be a concircular vector field if

$$
\left(\nabla_{X} A\right)(Y)=\alpha\{g(X, Y)+\omega(X) A(Y)\}
$$

where α is a non-zero scalar and ω is a closed 1 -form.
Let \bar{M} admits a unit timelike concircular vector field ξ. Then, on putting $\eta(X)=$ $g(X, \xi)$ for any vector field X, we have
(2.5) $\quad\left(\bar{\nabla}_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\},(\alpha \neq 0)$,
where $\bar{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

$$
\begin{equation*}
\bar{\nabla}_{X} \alpha=(X \alpha)=d \alpha(X)=\rho \eta(X) \tag{2.6}
\end{equation*}
$$

ρ is a certain scalar function given by $\rho=-(\xi \alpha)$.
If we put

$$
\begin{equation*}
\phi X=\frac{1}{\alpha} \bar{\nabla}_{X} \xi \tag{2.7}
\end{equation*}
$$

then from (2.5) and (2.7), we have

$$
\begin{equation*}
\phi X=X+\eta(X) \xi \tag{2.8}
\end{equation*}
$$

A Lorentzian manifold \bar{M} together with the unit timelike concircular vector field ξ, its associated 1-form η and a (1,1)-tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(L C S)_{n}$-manifold) [22]. In particular, if we take $\alpha=1$, then we can obtain the LP-Sasakian structure of Matsumoto [18]. In a $(L C S)_{n}$-manifold [22], the following relations hold:

$$
\begin{align*}
& \phi \xi=0, \quad \eta(\phi X)=0 \tag{2.9}\\
& g(\phi X, Y)=g(X, \phi Y) \\
& \left(\bar{\nabla}_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \tag{2.11}
\end{align*}
$$

for all vector fields X, Y, Z on \bar{M}. Again, if we put $\Phi(X, Y)=g(X, \phi Y)$, where Φ is a symmetric $(0,2)$ tensor field, then we have

$$
\begin{align*}
& \Phi(X, Y)=\frac{1}{\alpha}\left(\bar{\nabla}_{X} \eta\right)(Y) \tag{2.12}\\
& \left(\bar{\nabla}_{Z} \Phi\right)(X, Y)=g\left(X,\left(\bar{\nabla}_{Z} \phi\right) Y\right)=g\left(\left(\bar{\nabla}_{Z} \phi\right) X, Y\right) \\
& \left(\bar{\nabla}_{Z} \Phi\right)(X, Y)=\alpha[g(X, Z) \eta(Y)+2 \eta(X) \eta(Y) \eta(Z)+g(Y, Z) \eta(X)] \tag{2.14}
\end{align*}
$$

$$
(\alpha \neq 0)
$$

for any vector fields X, Y, Z, on \bar{M}.
Now, let M be a non-degenerate submanifold immersed in \bar{M}. We denote the Riemannian metric induced on M by same symbol g. Let $T M$ and $T^{\perp} M$ be the Lie algebra of vector fields tangential to M and normal to M respectively. Then Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.15}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N
\end{align*}
$$

for each $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇ is the Levi-Civita connection on M, ∇^{\perp} is the connection on the normal bundle $T^{\perp} M, h$ is the second fundamental form of M and A_{N} is the shape operator with respect to the normal section N, which are related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{2.17}
\end{equation*}
$$

For any $X \in T M$ and $N \in T^{\perp} M$, we put

$$
\begin{equation*}
\phi X=P X+F X \tag{2.18}
\end{equation*}
$$

where $P X$ (resp. $F X$) is the tangential component (resp. normal component) of ϕX. Similarly, for $N \in T^{\perp} M$, we put

$$
\begin{equation*}
\phi N=t N+f N \tag{2.19}
\end{equation*}
$$

where $t N$ (resp. $f N$) is the tangential component (resp. normal component) of ϕN.

From (2.10) and (2.15), it follows that

$$
\begin{equation*}
g(P X, Y)=g(X, P Y) \tag{2.20}
\end{equation*}
$$

and therefore $g\left(P^{2} X, Y\right)=g\left(X, P^{2} Y\right)$. Thus P^{2} which is denoted by Q, is self adjoint. We define the covariant derivatives of Q, P and F as
(2.22) $\quad\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P \nabla_{X} Y$,
(2.23) $\quad\left(\nabla_{X} F\right) Y=\nabla_{X}^{\perp}(F Y)-F \nabla_{X} Y$,
for any $X, Y \in T M$.
Using equations (2.15), (2.16), (2.17), (2.18), (2.19), (2.22) and (2.23) in (2.11), we get

$$
\begin{align*}
\left(\nabla_{X} P\right) Y & =A_{F Y} X+\operatorname{th}(X, Y) \tag{2.24}\\
& +\alpha\{g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \\
\left(\nabla_{X} F\right) Y & =-h(X, P Y)+f h(X, Y) \tag{2.25}
\end{align*}
$$

3. Slant Submanifolds

A non-degenerate submanifold M of a $(L C S)_{n}$-manifold \bar{M} is said to be slant if for any $x \in M$ and any $X \in T_{x} M$, linearly independent on ξ, the angle between ϕX and $T_{x} M$ is a constant $\theta \in\left[0, \frac{\pi}{2}\right]$, called the slant angle of M in \bar{M}. The invariant and anti-invariant submanifolds of \bar{M} are slant submanifolds with slant angle $\theta=0, \frac{\pi}{2}$. If the slant angle $\theta \neq 0, \frac{\pi}{2}$, then the slant submanifold is called a proper slant submanifold. We suppose that the structure vector field ξ is tangent to M. If we denote by D the distribution orthogonal to ξ in $T M$, we have the orthogonal direct decomposition

$$
T M=D \oplus\langle\xi\rangle .
$$

For a proper slant submanifold M of a $(L C S)_{n}$-manifold \bar{M} with slant angle θ, we have

$$
Q X=-\cos ^{2} \theta(X-\eta(X) \xi),
$$

for any $X \in T M$.
Now, we have following results which characterize non-degenerate slant submanifolds of a $(L C S)_{n}$-manifold.

Theorem 3.1. Let M be a submanifold of a $(L C S)_{n}$-manifold \bar{M} such that $\xi \in$ $T M$. Then, M is slant if and only if there exists a constant $\lambda \in[0,1]$ such that

$$
\begin{equation*}
Q=-\lambda(I-\eta \otimes \xi) \tag{3.1}
\end{equation*}
$$

Furthermore, in such case, if θ is the slant angle of M, it satisfies $\lambda=\cos ^{2} \theta$.

Theorem 3.2. Let M be a slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then at each point $x \in M,\left.Q\right|_{D}$ has only one eigenvalue λ, where $\lambda=\cos ^{2} \theta$, θ being the slant angle of M.

The proof of above theorems follow by using similar steps as in Theorem [2.2] and Lemma [4.2], in [6] respectively.
Now, we have
Theorem 3.3. Let M be a slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then $\nabla Q \neq 0$, i.e. Q is not parallel.
Proof. Let M be a slant submanifold of $(L C S)_{n}$-manifold \bar{M} and θ be the slant angle of M. Then for any X, Y in $T M$, by equation (3.1), we get

$$
\begin{align*}
& Q\left(\nabla_{X} Y\right)=\cos ^{2} \theta\left(-\nabla_{X} Y+\eta\left(\nabla_{X} Y\right) \xi\right) \tag{3.2}\\
& Q Y=\cos ^{2} \theta(-Y+\eta(Y) \xi)
\end{align*}
$$

Differentiating (3.3) covariantly with respect to X, we get

$$
\begin{align*}
\left(\nabla_{X} Q\right) Y+Q\left(\nabla_{X} Y\right) & =\cos ^{2} \theta\left(-\nabla_{X} Y+\eta\left(\nabla_{X} Y\right) \xi\right) \tag{3.4}\\
& +\cos ^{2} \theta(g(Y, \alpha \phi X) \xi+\eta(Y) \alpha \phi X)
\end{align*}
$$

Using equations (2.7) and (3.2) in (3.4), we obtain

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y=\alpha \cos ^{2} \theta(g(Y, X) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X) \tag{3.5}
\end{equation*}
$$

From (3.5), it is clear that $\nabla Q=0$, if and only if $\theta=\frac{\pi}{2}$. In view of Theorem 3.1 [9], the result follows.

Theorem 3.4. Let M be a submanifold of $(L C S)_{n}$-manifold \bar{M}. Then, M is slant if and only if
(i) the endomorphism $\left.Q\right|_{D}$ has only one eigen value at each point of M,
(ii) there exists a function $\lambda: M \rightarrow[0,1]$ such that

$$
\left(\nabla_{X} Q\right) Y=\lambda[\alpha(g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X)]
$$

for any $X, Y \in T M$. If θ is the slant angle of M, then $\lambda=\cos ^{2} \theta$.
Proof. Let M be slant, then the statements (i) and (ii) follow directly from Theorem 3.2 and equation (3.5) respectively.

Conversely, suppose that $D=\langle\xi\rangle^{\perp}$ and assume that statements (i) and (ii) hold. Let λ_{1} be the eigenvalue of $\left.Q\right|_{D}$, then $Q Y=\lambda_{1} Y$ for each $Y \in D$. Then from (ii), we have

$$
\begin{gathered}
\quad \nabla_{X} Q Y=Q \nabla_{X} Y+\lambda[\alpha g(X, Y) \xi] \\
\text { i.e. }\left(X \lambda_{1}\right) Y+\lambda_{1} \nabla_{X} Y=Q \nabla_{X} Y+\lambda \alpha g(X, Y) \xi
\end{gathered}
$$

for any $X \in T M$. Since $\nabla_{X} Y$ and $Q \nabla_{X} Y$ are perpendicular to Y, we observe that λ_{1} is a constant on M.
Now, let $X \in T M$. Then we can write

$$
X=\bar{X}+\eta(X) \xi
$$

where $\bar{X} \in D$. Hence $Q X=Q \bar{X}$. Since $\left.Q\right|_{D}=\lambda_{1} I$, we have $Q \bar{X}=\lambda_{1} \bar{X}$ and so $Q X=\lambda_{1} \bar{X}$ which implies that $Q X=\lambda_{1}(X-\eta(X) \xi)$. By taking $\mu=-\lambda_{1}$, the above equation can be written as

$$
Q X=-\mu(X-\eta(X) \xi)
$$

As $\lambda_{1}(=-\mu)$ is constant, by Theorem 3.1, M is slant in \bar{M} and $\mu=\cos ^{2} \theta$.

4. Semi-slant Submanifolds

A non-degenerate submanifold M of a $(L C S)_{n}$-manifold \bar{M} is said to be semislant submanifold if there exist two orthogonal distributions D_{1} and D_{2} on M such that
(i) $T M$ admits the orthogonal direct decomposition i.e.

$$
T M=D_{1} \oplus D_{2} \oplus\langle\xi\rangle,
$$

(ii) the distribution D_{1} is an invariant distribution, i.e. $\phi\left(D_{1}\right)=D_{1}$,
(iii) the distribution D_{2} is slant with slant angle $\theta \neq 0$ and $\langle\xi\rangle$ denotes the distribution spanned by the structure vector field ξ.

It is clear that if $\theta=\frac{\pi}{2}$, then a semi-slant submanifold is a semi-invariant submanifold. Moreover, if the dimension of $D_{2}=0$, then M is an invariant submanifold. If the dimension of $D_{1}=0$ and $\theta=\frac{\pi}{2}$, then M is an anti-invariant submanifold and M is a proper slant submanifold with slant angle θ, if dimension of $D_{1}=0$ and $\theta \neq \frac{\pi}{2}$.
A semi-slant submanifold is called a proper semi-slant submanifold if dimension of D_{1} and D_{2}, both are not equal to zero and $\theta \neq \frac{\pi}{2}$.
Let M be a non-degenerate semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then in view of Theorem 3.1 [9], the slant angle $\theta \neq \frac{\pi}{2}$, i.e., D_{2} is not anti-invariant. For $X \in T M$, we can write
(4.1) $\quad X=P_{1} X+P_{2} X+\eta(X) \xi$,
where $P_{1} X \in D_{1}$ and $P_{2} X \in D_{2}$. Now, applying ϕ on (4.1), we obtain
(4.2) $\quad \phi X=\phi P_{1} X+P P_{2} X+F P_{2} X$.

Then, it is easy to observe that
(4.3) $\quad \phi P_{1} X=P P_{1} X, F P_{1} X=0$ and $P P_{2} X \in D_{2}$.

Thus, we have
(4.4) $\quad P X=\phi P_{1} X+P P_{2} X$ and $F X=F P_{2} X$.

Let μ denotes the orthogonal complement of ϕD_{2} in $T^{\perp} M$, i.e., $T^{\perp} M=\phi D_{2} \oplus \mu$. Then μ is an invariant subbundle of $T^{\perp} M$.

Now, we are in position to workout the integrability conditions of the distributions D_{1} and D_{2} involved in definition of a non-degenerate semi-slant submanifold of a $(L C S)_{n}$-manifold.

Lemma 4.1. Let M be a semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then we have:

$$
\begin{aligned}
& \nabla_{X} \xi=\alpha \phi X, \quad h(X, \xi)=0, \text { for any } X \in D_{1} \\
& \nabla_{Y} \xi=\alpha P P_{2} Y, \quad h(Y, \xi)=\alpha F P_{2} Y, \text { for any } Y \in D_{2} \\
& \nabla_{\xi} \xi=0, \quad h(\xi, \xi)=0
\end{aligned}
$$

Proof. The lemma follows from (2.7) by using (4.1), (4.2) and (2.15).
Theorem 4.2. Let M be a semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then the distribution $D_{1} \oplus D_{2}$ is integrable.
Proof. Let $X, Y \in D_{1} \oplus D_{2}$. Then

$$
\begin{aligned}
g([X, Y], \xi) & =g\left(\nabla_{X} Y-\nabla_{Y} X, \xi\right) \\
& =-g\left(Y, \nabla_{X} \xi\right)+g\left(X, \nabla_{Y} \xi\right) \\
& =-g(Y, \alpha \phi X)+g(X, \alpha \phi Y) \\
& =\alpha[-g(X, \phi Y)+g(X, \phi Y)]=0 .
\end{aligned}
$$

This implies that $[X, Y] \in D_{1} \oplus D_{2}$ and hence $D_{1} \oplus D_{2}$ is integrable.
Theorem 4.3. Let M be a semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then the invariant distribution D_{1} is integrable if and only if $h(X, \phi Y)=h(Y, \phi X)$ for all $X, Y \in D_{1}$.
Proof. Let $N \in T^{\perp} M$. We have
$g\left(\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X, N\right)=g\left(\left(\bar{\nabla}_{X} \phi\right) Y-\phi \bar{\nabla}_{X} Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi \bar{\nabla}_{Y} X, N\right)$.
By using equations (2.11) and (4.2) in above, we get
(4.5) $\quad g\left(F P_{2}[X, Y], N\right)=g(h(X, \phi Y)-h(\phi X, Y), N)$.

Thus D_{1} is integrable if and only if $h(X, \phi Y)=h(\phi X, Y)$, for $X, Y \in D_{1}$.
Corollary 4.4. Let M be a semi-slant submanifold of a (LCS $)_{n}$-manifold \bar{M}. Then, the distribution $D_{1} \oplus \xi$ is integrable if and only if $h(X, \phi Y)=h(Y, \phi X)$ for any $X, Y \in D_{1} \oplus \xi$.

Proof. From equation (4.5), we have
(4.6) $\quad h(X, \phi Y)-h(\phi X, Y)=F P_{2}[X, Y]$,
for any $X, Y \in D_{1} \oplus\{\xi\}$. Hence, if $D_{1} \oplus\{\xi\}$ is integrable, then we have $h(X, \phi Y)=$ $h(\phi X, Y)$.

Conversely, let $h(X, \phi Y)=h(Y, \phi X)$ for any $X, Y \in D_{1} \oplus \xi$.
Then equation (4.6) gives

$$
F P_{2}[X, Y]=0
$$

Since D_{2} is a slant distribution with slant angle $\theta(\neq 0), P_{2}[X, Y]$ must vanish.
Therefore, $[X, Y] \in D_{1} \oplus\{\xi\}$.
This completes the proof.

Lemma 4.5. Let M be a semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then, for any $X, Y \in T M$, we have

$$
\begin{align*}
(4.7) & P_{1}\left(\nabla_{X} \phi P_{1} Y\right)+P_{1}\left(\nabla_{X} P P_{2} Y\right) \tag{4.7}\\
& =\phi P_{1} \nabla_{X} Y+P_{1} A_{F P_{2} Y} X \\
& +\alpha \eta(Y) P_{1} X, \tag{4.8}\\
(4.8) & P_{2}\left(\nabla_{X} \phi P_{1} Y\right)+P_{2}\left(\nabla_{X} P P_{2} Y\right) \\
& =P_{2}\left(A_{F P_{2} Y} X\right)+P P_{2} \nabla_{X} Y+t h(X, Y) \\
& +\alpha \eta(Y) P_{2} X, \tag{4.10}\\
(4.9) & \eta\left(\nabla_{X} \phi P_{1} Y\right)+\eta\left(\nabla_{X} P P_{2} Y\right)= \\
(4.10) & h\left(X, \phi A_{F P_{2} Y} X\right)+\alpha(g(X, Y)+3 \eta(Y) \eta(X)), \\
& h\left(X, h\left(X, P P_{2} Y\right)+\nabla \frac{1}{X} F P_{2} Y=F P_{2} \nabla_{X} Y+f h(X, Y) .\right.
\end{align*}
$$

Proof. By using equations (2.11), (2.15), (2.16), (2.19), (4.1), (4.2), (4.3) and (4.4), we get

$$
\text { (4.11) } \begin{aligned}
& \quad \nabla_{X} \phi P_{1} Y+h\left(X, \phi P_{1} Y\right)+\nabla_{X} P P_{2} Y+h\left(X, P P_{2} Y\right)-A_{F P_{2} Y} X \\
& +\quad \nabla_{X}^{\perp} F P_{2} Y=\phi P_{1} \nabla_{X} Y+P P_{2} \nabla_{X} Y+F P_{2} \nabla_{X} Y+\operatorname{th}(X, Y)+f h(X, Y) \\
& +\alpha \eta(Y) P_{1} X+\alpha \eta(Y) P_{2} X+\alpha(g(X, Y) \xi+3 \eta(Y) \eta(X) \xi),
\end{aligned}
$$

for any $X, Y \in T M$. Hence (4.7), (4.8), (4.9) and (4.10) follow from (4.11), by identifying the components on $D_{1}, D_{2},\langle\xi\rangle$ and $T^{\perp} M$ respectively.

Theorem 4.6. Let M be a semi-slant submanifold of a $(L C S)_{n}$-manifold \bar{M}. Then the distribution D_{2} is integrable if and only if

$$
\begin{equation*}
P_{1}\left(\nabla_{X} P Y-\nabla_{Y} P X\right)=P_{1}\left(A_{F Y} X-A_{F X} Y\right) \tag{4.12}
\end{equation*}
$$

for any $X, Y \in D_{2}$.
Proof. As in Theorem (4.2), we have

$$
\begin{equation*}
g([X, Y], \xi)=0, \tag{4.13}
\end{equation*}
$$

for any $X, Y \in D_{2}$.
From equation (4.7), we can easily obtain
(4.14) $\quad \phi P_{1}[X, Y]=P_{1}\left(\nabla_{X} P Y-\nabla_{Y} P X\right)-P_{1}\left(A_{F Y} X-A_{F X} Y\right)$,
for any $X, Y \in D_{2}$.
As $\phi P_{1}[X, Y]=0, \forall X, Y \in D_{2}$ if and only if $P_{1}[X, Y]=0$, in view of (4.13) and (4.14), D_{2} is integrable if and only if (4.12) holds.

Acknowledgments. The authors would like to express their gratitude to the referee for valuable comments and suggestions.

References

[1] M. Atceken, On geometry of submanifolds of $(L C S)_{n}$-manifolds, Int. J. Math. and Math. Sci., (2012), 1-11.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, New York, 1976.
[3] A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ., "Al, I. Cuza" Iasi. 27(1981), 163-170.
[4] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
[5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata, 78(2)(1999), 183-199.
[6] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42(1)(2000), 125-138.
[7] U. C. De, A. A. Shaikh, Non-existence of proper semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 22(2)(1999), 179-183.
[8] U. C. De, A. A. Shaikh, A. Sengupta, On LP-Sasakian manifolds with a coefficient α, Kyungpook Math. J., 42(2002), 177-186.
[9] U. C. De, A. A. Aqeel, A. A. Shaikh, Submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 28(2)(2005), 223-227.
[10] R. S. Gupta, S. M. Khursheed Haider, M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Radovi Matematicki, 12 (2004), 205-214.
[11] S. K. Hui, M. Atceken, Contact warped product semi-slant submanifolds of $(L C S)_{n}$ manifolds, Acta Univ. Sapientiae, Mathematica, 3(2)(2011), 212-224.
[12] M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor, (N. S.) 30(1976), 239-245.
[13] Kalpana, G. Guha, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Ganit, J. Bangladesh Math. Soc., 13(1993), 71-76.
[14] V. A. Khan, M. A. Khan, Semi-slant submanifolds of trans-Sasakian manifolds, Sarajevo J. Math., 2(14)(2006), 83-93.
[15] V. A. Khan, M. A. Khan, K. A. Khan, Slant and semi-slant submanifolds of Kenmotsu manifold, Mathematica Slovaca, 57(5)(2007), 483-494.
[16] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39(1996), 183-198.
[17] A. Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl., 3(1)(1998), 37-51.
[18] K. Matsumoto, On Lorentzian almost para-contact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(1989), 151-156.
[19] S. Prasad, R. H. Ojha, Lorentzian para-contact submanifolds, Publ. Math. Debrecen, 44(1994), 215-223.
[20] N. Papaghiuc, Semi-slant submanifolds of Kahlerian manifold, An. Stiint. Univ., "Al, I. Cuza" Iasi., 9(1994), 55-61.
[21] B. Prasad, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 21(2)(1998), 21-26.
[22] A. A. Shaikh, On Lorentzian almost para-contact manifolds with a structure of the concircular type, Kyungpook Math. J., 43(2003), 305-314.
[23] A. A. Shaikh, Some results on $(L C S)_{n}$-manifolds, J. Korean Math. Soc., 46(3)(2009), 449-461.
[24] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes, J. Math. and Stat., 1(2005), 129-132.
[25] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes II, Amer. J. Appl. Sci., 3(4)(2006), 1790-1794.
[26] A. A. Shaikh, T. Basu, S. Eyasmin, On the existence of ϕ-recurrent $(L C S)_{n}$ manifolds, Extracta Mathematicae, 23(1)(2008), 71-83.

[^0]: * Corresponding Author.

 Received January 22, 2012; accepted October 09, 2012.
 2010 Mathematics Subject Classification: 53C15, 53C25.
 Key words and phrases: $(L C S)_{n}$-manifold, slant submanifold, semi-slant submanifold.

