KYUNGPOOK Math. J. 54(2014), 667-676 http://dx.doi.org/10.5666/KMJ.2014.54.4.667

Slant Submanifolds of $(LCS)_n$ -manifolds

SHIV SHARMA SHUKLA^{*} AND MUKESH KUMAR SHUKLA Department of Mathematics, University of Allahabad, Allahabad-211002, India e-mail: ssshukla_au@rediffmail.com and mukesh_mathau@rediffmail.com

RAJENDRA PRASAD Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India e-mail: rp_manpur@rediffmail.com

ABSTRACT. In this article, we study slant and semi-slant submanifolds of $(LCS)_n$ manifolds. Integrability conditions of distributions involved in definition of semi-slant submanifolds of a $(LCS)_n$ -manifold have been obtained.

1. Introduction

The study of slant immersions was initiated by B.Y. Chen [4]. A. Lotta [16], introduced and studied slant submanifolds of an almost contact metric manifold. He also studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds of K-contact manifolds [17]. In 2000, Cabrerizo et al. studied slant submanifolds of a Sasakian manifold and obtained many interesting results. They also gave several examples of slant submanifolds of a Sasakian manifold [6]. The study of semi-slant submanifolds was initiated by Papaghiuc [20]. Semi-slant submanifolds are generalized version of CR-submanifolds. In 1999, Cabrerizo et al. [5] studied semi-slant submanifolds of a Sasakian manifold. In [14], authors studied semi-slant submanifolds of a trans-Sasakian manifold. On the other hand, in 2003 [22], A.A. Shaikh introduced the notion of Lorentzian concircular structure manifolds (briefly $(LCS)_n$ -manifolds) and proved its existence by several examples and found its applications to the general relativity and cosmology in [24] and [25]. He also studied some results on $(LCS)_n$ -manifolds in [23]. $(LCS)_n$ -manifolds are generalization of LP-Sasakian manifolds introduced by Matsumoto [18]. In [11], S.K. Hui and M. Atceken studied contact warped product semi-slant submanifolds of $(LCS)_n$ manifolds. Again, in [1], M. Atceken obtained some interesting results on invariant

^{*} Corresponding Author.

Received January 22, 2012; accepted October 09, 2012.

²⁰¹⁰ Mathematics Subject Classification: 53C15, 53C25.

Key words and phrases: $(LCS)_n$ -manifold, slant submanifold, semi-slant submanifold.

⁶⁶⁷

submanifolds of $(LCS)_n$ -manifolds. Thus motivated sufficiently, in this paper, we study slant and semi-slant submanifolds of a $(LCS)_n$ -manifold. We observe that the metric induced on a submanifold of a $(LCS)_n$ -manifold may be either degenerate or non-degenerate. In this article, we focus our attention on non-degenerate submanifolds of $(LCS)_n$ -manifolds.

2. Preliminaries

Let \overline{M} be an *n*-dimensional real differentiable manifold of differentiability class C^{∞} endowed with a (1, 1) tensor field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g of type (0, 2) such that for each point $p \in M$, the tensor $g_p : T_p \overline{M} \times T_p \overline{M} \to \mathbb{R}$ is a non-degenerate inner product of signature (-, +, ..., +), where $T_p \overline{M}$ denotes the tangent vector space of \overline{M} at p and \mathbb{R} is the real number space, which satisfies

- (2.1) $\eta(\xi) = -1,$
- (2.2) $\phi^2 X = X + \eta(X)\xi,$
- (2.3) $g(X,\xi) = \eta(X),$
- (2.4) $g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$

for all vector fields X and Y on \overline{M} . Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold \overline{M} with a Lorentzian paracontact structure is called a Lorentzian paracontact manifold [18]. Since a Lorentzian metric g is of index 1, Lorentzian manifold has not only spacelike vector fields but also timelike and lightlike vector fields. A non-zero vector $u \in T_p\overline{M}$ is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies $g_p(u, u) < 0(resp., \leq 0, = 0, > 0)$.

Definition 2.1. In a Lorentzian manifold (\overline{M}, g) , a vector field P defined by g(X, P) = A(X), for any $X \in \chi(M)$, is said to be a concircular vector field if

$$(\nabla_X A)(Y) = \alpha \left\{ g(X, Y) + \omega(X) A(Y) \right\}$$

where α is a non-zero scalar and ω is a closed 1-form.

Let \overline{M} admits a unit timelike concircular vector field ξ . Then, on putting $\eta(X) = g(X, \xi)$ for any vector field X, we have

(2.5)
$$(\overline{\nabla}_X \eta)(Y) = \alpha \{ g(X, Y) + \eta(X) \eta(Y) \}, \ (\alpha \neq 0),$$

where $\overline{\nabla}$ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

(2.6)
$$\overline{\nabla}_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X),$$

 ρ is a certain scalar function given by $\rho = -(\xi \alpha)$.

If we put

(2.7) $\phi X = \frac{1}{\alpha} \overline{\nabla}_X \xi,$

then from (2.5) and (2.7), we have

(2.8) $\phi X = X + \eta(X)\xi.$

A Lorentzian manifold \overline{M} together with the unit timelike concircular vector field ξ , its associated 1-form η and a (1, 1)-tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(LCS)_n$ -manifold) [22]. In particular, if we take $\alpha = 1$, then we can obtain the LP-Sasakian structure of Matsumoto [18]. In a $(LCS)_n$ -manifold [22], the following relations hold:

(2.9) $\phi \xi = 0, \quad \eta(\phi X) = 0,$

$$(2.10) \qquad g(\phi X, Y) = g(X, \phi Y),$$

(2.11) $(\overline{\nabla}_X \phi)(Y) = \alpha \{g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X\},\$

for all vector fields X, Y, Z on \overline{M} . Again, if we put $\Phi(X, Y) = g(X, \phi Y)$, where Φ is a symmetric (0, 2) tensor field, then we have

(2.12)
$$\Phi(X,Y) = \frac{1}{\alpha} (\nabla_X \eta)(Y),$$

(2.13) $(\overline{\nabla}_Z \Phi)(X, Y) = g(X, (\overline{\nabla}_Z \phi)Y) = g((\overline{\nabla}_Z \phi)X, Y),$

- $(2.14) \qquad (\overline{\nabla}_Z \Phi)(X,Y) = \alpha[g(X,Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z) + g(Y,Z)\eta(X)],$
- $(\alpha \neq 0)$

for any vector fields X, Y, Z, on \overline{M} .

Now, let M be a non-degenerate submanifold immersed in \overline{M} . We denote the Riemannian metric induced on M by same symbol g. Let TM and $T^{\perp}M$ be the Lie algebra of vector fields tangential to M and normal to M respectively. Then Gauss and Weingarten formulae are given by

- (2.15) $\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$
- (2.16) $\overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$

for each $X, Y \in TM$ and $N \in T^{\perp}M$, where ∇ is the Levi-Civita connection on M, ∇^{\perp} is the connection on the normal bundle $T^{\perp}M$, h is the second fundamental form of M and A_N is the shape operator with respect to the normal section N, which are related by

(2.17)
$$g(A_N X, Y) = g(h(X, Y), N).$$

For any $X \in TM$ and $N \in T^{\perp}M$, we put

 $(2.18) \qquad \phi X = PX + FX,$

where PX (resp. FX) is the tangential component (resp. normal component) of ϕX . Similarly, for $N \in T^{\perp}M$, we put

 $(2.19) \qquad \phi N = tN + fN,$

where tN (resp. fN) is the tangential component (resp. normal component) of ϕN .

From (2.10) and (2.15), it follows that

$$(2.20) \qquad g(PX,Y) = g(X,PY),$$

and therefore $g(P^2X, Y) = g(X, P^2Y)$. Thus P^2 which is denoted by Q, is self adjoint. We define the covariant derivatives of Q, P and F as

- (2.21) $(\nabla_X Q)Y = \nabla_X (QY) Q\nabla_X Y,$
- (2.22) $(\nabla_X P)Y = \nabla_X (PY) P\nabla_X Y,$
- (2.23) $(\nabla_X F)Y = \nabla_X^{\perp}(FY) F\nabla_X Y,$

for any $X, Y \in TM$.

Using equations (2.15), (2.16), (2.17), (2.18), (2.19), (2.22) and (2.23) in (2.11), we get

(2.24)
$$(\nabla_X P)Y = A_{FY}X + th(X,Y) + \alpha \{g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X\},$$

(2.25)
$$(\nabla_X F)Y = -h(X, PY) + fh(X, Y).$$

3. Slant Submanifolds

A non-degenerate submanifold M of a $(LCS)_n$ -manifold \overline{M} is said to be slant if for any $x \in M$ and any $X \in T_x M$, linearly independent on ξ , the angle between ϕX and $T_x M$ is a constant $\theta \in [0, \frac{\pi}{2}]$, called the slant angle of M in \overline{M} . The invariant and anti-invariant submanifolds of \overline{M} are slant submanifolds with slant angle $\theta = 0, \frac{\pi}{2}$. If the slant angle $\theta \neq 0, \frac{\pi}{2}$, then the slant submanifold is called a proper slant submanifold. We suppose that the structure vector field ξ is tangent to M. If we denote by D the distribution orthogonal to ξ in TM, we have the orthogonal direct decomposition

$$TM = D \oplus \langle \xi \rangle.$$

For a proper slant submanifold M of a $(LCS)_n\text{-manifold }\overline{M}$ with slant angle $\theta,$ we have

$$QX = -\cos^2\theta(X - \eta(X)\xi),$$

for any $X \in TM$.

Now, we have following results which characterize non-degenerate slant submanifolds of a $(LCS)_n$ -manifold.

Theorem 3.1. Let M be a submanifold of a $(LCS)_n$ -manifold \overline{M} such that $\xi \in TM$. Then, M is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that

(3.1) $Q = -\lambda(I - \eta \otimes \xi).$

Furthermore, in such case, if θ is the slant angle of M, it satisfies $\lambda = \cos^2 \theta$.

Theorem 3.2. Let M be a slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then at each point $x \in M$, $Q|_D$ has only one eigenvalue λ , where $\lambda = \cos^2 \theta$, θ being the slant angle of M.

The proof of above theorems follow by using similar steps as in Theorem [2.2] and Lemma [4.2], in [6] respectively. Now, we have

Theorem 3.3. Let M be a slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then $\nabla Q \neq 0$, *i.e.* Q is not parallel.

Proof. Let M be a slant submanifold of $(LCS)_n$ -manifold \overline{M} and θ be the slant angle of M. Then for any X, Y in TM, by equation (3.1), we get

(3.2)
$$Q(\nabla_X Y) = \cos^2 \theta (-\nabla_X Y + \eta (\nabla_X Y)\xi),$$

(3.3)
$$QY = \cos^2 \theta (-Y + \eta(Y)\xi).$$

Differentiating (3.3) covariantly with respect to X, we get

(3.4)
$$(\nabla_X Q)Y + Q(\nabla_X Y) = \cos^2 \theta (-\nabla_X Y + \eta (\nabla_X Y)\xi) + \cos^2 \theta (g(Y, \alpha \phi X)\xi + \eta (Y)\alpha \phi X).$$

Using equations (2.7) and (3.2) in (3.4), we obtain

(3.5) $(\nabla_X Q)Y = \alpha \cos^2 \theta(g(Y, X)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X).$

From (3.5), it is clear that $\nabla Q = 0$, if and only if $\theta = \frac{\pi}{2}$. In view of Theorem 3.1 [9], the result follows.

Theorem 3.4. Let M be a submanifold of $(LCS)_n$ -manifold \overline{M} . Then, M is slant if and only if

- (i) the endomorphism $Q|_D$ has only one eigen value at each point of M,
- (ii) there exists a function $\lambda: M \to [0,1]$ such that

$$(\nabla_X Q)Y = \lambda[\alpha(g(X,Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X)],$$

for any $X, Y \in TM$. If θ is the slant angle of M, then $\lambda = \cos^2 \theta$.

Proof. Let M be slant, then the statements (i) and (ii) follow directly from Theorem 3.2 and equation (3.5) respectively.

Conversely, suppose that $D = \langle \xi \rangle^{\perp}$ and assume that statements (i) and (ii) hold. Let λ_1 be the eigenvalue of $Q|_D$, then $QY = \lambda_1 Y$ for each $Y \in D$. Then from (ii), we have

$$\begin{aligned} \nabla_X QY &= Q \nabla_X Y + \lambda [\alpha g(X,Y)\xi], \\ \text{i.e.} \ (X\lambda_1)Y + \lambda_1 \nabla_X Y &= Q \nabla_X Y + \lambda \alpha g(X,Y)\xi, \end{aligned}$$

for any $X \in TM$. Since $\nabla_X Y$ and $Q \nabla_X Y$ are perpendicular to Y, we observe that λ_1 is a constant on M.

Now, let $X \in TM$. Then we can write

$$X = \overline{X} + \eta(X)\xi,$$

where $\overline{X} \in D$. Hence $QX = Q\overline{X}$. Since $Q|_D = \lambda_1 I$, we have $Q\overline{X} = \lambda_1 \overline{X}$ and so $QX = \lambda_1 \overline{X}$ which implies that $QX = \lambda_1 (X - \eta(X)\xi)$. By taking $\mu = -\lambda_1$, the above equation can be written as

$$QX = -\mu(X - \eta(X)\xi).$$

As $\lambda_1(=-\mu)$ is constant, by Theorem 3.1, M is slant in \overline{M} and $\mu = \cos^2 \theta$.

4. Semi-slant Submanifolds

0

A non-degenerate submanifold M of a $(LCS)_n$ -manifold \overline{M} is said to be semislant submanifold if there exist two orthogonal distributions D_1 and D_2 on M such that

(i) TM admits the orthogonal direct decomposition i.e.

$$TM = D_1 \oplus D_2 \oplus \langle \xi \rangle,$$

(ii) the distribution D_1 is an invariant distribution, i.e. $\phi(D_1) = D_1$,

(iii) the distribution D_2 is slant with slant angle $\theta \neq 0$ and $\langle \xi \rangle$ denotes the distribution spanned by the structure vector field ξ .

It is clear that if $\theta = \frac{\pi}{2}$, then a semi-slant submanifold is a semi-invariant submanifold. Moreover, if the dimension of $D_2 = 0$, then M is an invariant submanifold. If the dimension of $D_1 = 0$ and $\theta = \frac{\pi}{2}$, then M is an anti-invariant submanifold and M is a proper slant submanifold with slant angle θ , if dimension of $D_1 = 0$ and $\theta \neq \frac{\pi}{2}$.

A semi-slant submanifold is called a proper semi-slant submanifold if dimension of D_1 and D_2 , both are not equal to zero and $\theta \neq \frac{\pi}{2}$.

Let M be a non-degenerate semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then in view of Theorem 3.1 [9], the slant angle $\theta \neq \frac{\pi}{2}$, i.e., D_2 is not anti-invariant. For $X \in TM$, we can write

(4.1) $X = P_1 X + P_2 X + \eta(X)\xi,$

where $P_1 X \in D_1$ and $P_2 X \in D_2$. Now, applying ϕ on (4.1), we obtain

(4.2)
$$\phi X = \phi P_1 X + P P_2 X + F P_2 X.$$

Then, it is easy to observe that

(4.3) $\phi P_1 X = P P_1 X, F P_1 X = 0 \text{ and } P P_2 X \in D_2.$

Thus, we have

(4.4) $PX = \phi P_1 X + P P_2 X$ and $FX = F P_2 X$.

Let μ denotes the orthogonal complement of ϕD_2 in $T^{\perp}M$, i.e., $T^{\perp}M = \phi D_2 \oplus \mu$. Then μ is an invariant subbundle of $T^{\perp}M$.

Now, we are in position to workout the integrability conditions of the distributions D_1 and D_2 involved in definition of a non-degenerate semi-slant submanifold of a $(LCS)_n$ -manifold. **Lemma 4.1.** Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then we have:

$$\begin{aligned} \nabla_X \xi &= \alpha \phi X, \quad h(X,\xi) = 0, \ \text{for any } X \in D_1; \\ \nabla_Y \xi &= \alpha P P_2 Y, \quad h(Y,\xi) = \alpha F P_2 Y, \ \text{for any } Y \in D_2; \\ \nabla_\xi \xi &= 0, \quad h(\xi,\xi) = 0. \end{aligned}$$

Proof. The lemma follows from (2.7) by using (4.1), (4.2) and (2.15).

Theorem 4.2. Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then the distribution $D_1 \oplus D_2$ is integrable.

Proof. Let $X, Y \in D_1 \oplus D_2$. Then

$$g([X,Y],\xi) = g(\nabla_X Y - \nabla_Y X,\xi)$$

= $-g(Y, \nabla_X \xi) + g(X, \nabla_Y \xi)$
= $-g(Y, \alpha \phi X) + g(X, \alpha \phi Y)$
= $\alpha[-g(X, \phi Y) + g(X, \phi Y)] = 0.$

This implies that $[X, Y] \in D_1 \oplus D_2$ and hence $D_1 \oplus D_2$ is integrable. \Box

Theorem 4.3. Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then the invariant distribution D_1 is integrable if and only if $h(X, \phi Y) = h(Y, \phi X)$ for all $X, Y \in D_1$.

Proof. Let $N \in T^{\perp}M$. We have

$$g(\overline{\nabla}_X \phi Y - \overline{\nabla}_Y \phi X, N) = g((\overline{\nabla}_X \phi)Y - \phi \overline{\nabla}_X Y - (\overline{\nabla}_Y \phi)X + \phi \overline{\nabla}_Y X, N).$$

By using equations (2.11) and (4.2) in above, we get

(4.5) $g(FP_2[X,Y],N) = g(h(X,\phi Y) - h(\phi X,Y),N).$

Thus D_1 is integrable if and only if $h(X, \phi Y) = h(\phi X, Y)$, for $X, Y \in D_1$.

Corollary 4.4. Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then, the distribution $D_1 \oplus \xi$ is integrable if and only if $h(X, \phi Y) = h(Y, \phi X)$ for any $X, Y \in D_1 \oplus \xi$.

Proof. From equation (4.5), we have

(4.6) $h(X, \phi Y) - h(\phi X, Y) = FP_2[X, Y],$

for any $X, Y \in D_1 \oplus \{\xi\}$. Hence, if $D_1 \oplus \{\xi\}$ is integrable, then we have $h(X, \phi Y) = h(\phi X, Y)$.

Conversely, let $h(X, \phi Y) = h(Y, \phi X)$ for any $X, Y \in D_1 \oplus \xi$.

Then equation (4.6) gives

 $FP_2[X,Y] = 0.$

Since D_2 is a slant distribution with slant angle $\theta(\neq 0)$, $P_2[X, Y]$ must vanish. Therefore, $[X, Y] \in D_1 \oplus \{\xi\}$.

This completes the proof.

Lemma 4.5. Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then, for any $X, Y \in TM$, we have

(4.7)
$$P_1(\nabla_X \phi P_1 Y) + P_1(\nabla_X P P_2 Y) = \phi P_1 \nabla_X Y + P_1 A_{FP_2 Y} X + \alpha \eta(Y) P_1 X,$$

(4.8)
$$P_2(\nabla_X \phi P_1 Y) + P_2(\nabla_X P P_2 Y) = P_2(A_{FP_2 Y} X) + P P_2 \nabla_X Y + th(X, Y) + \alpha \eta(Y) P_2 X,$$

(4.9)
$$\eta(\nabla_X \phi P_1 Y) + \eta(\nabla_X P P_2 Y) = \eta(A_{FP_2 Y} X) + \alpha(g(X, Y) + 3\eta(Y)\eta(X)),$$

(4.10)
$$h(X, \phi P_1 Y) + h(X, PP_2 Y) + \nabla_X^{\perp} FP_2 Y = FP_2 \nabla_X Y + fh(X, Y).$$

Proof. By using equations (2.11), (2.15), (2.16), (2.19), (4.1), (4.2), (4.3) and (4.4), we get

$$\begin{aligned} (4.11) \quad & \nabla_X \phi P_1 Y + h(X, \phi P_1 Y) + \nabla_X P P_2 Y + h(X, P P_2 Y) - A_{F P_2 Y} X \\ & + \nabla_X^{\perp} F P_2 Y = \phi P_1 \nabla_X Y + P P_2 \nabla_X Y + F P_2 \nabla_X Y + t h(X, Y) + f h(X, Y) \\ & + \alpha \eta(Y) P_1 X + \alpha \eta(Y) P_2 X + \alpha (g(X, Y) \xi + 3\eta(Y) \eta(X) \xi), \end{aligned}$$

for any $X, Y \in TM$. Hence (4.7), (4.8), (4.9) and (4.10) follow from (4.11), by identifying the components on $D_1, D_2, \langle \xi \rangle$ and $T^{\perp}M$ respectively.

Theorem 4.6. Let M be a semi-slant submanifold of a $(LCS)_n$ -manifold \overline{M} . Then the distribution D_2 is integrable if and only if

 $\begin{array}{ll} (4.12) & P_1(\nabla_X PY - \nabla_Y PX) = P_1(A_{FY}X - A_{FX}Y), \\ \text{for any } X, Y \in D_2. \\ \end{array} \\ \begin{array}{ll} \textit{Proof. As in Theorem (4.2), we have} \\ (4.13) & g([X,Y],\xi) = 0, \\ \text{for any } X, Y \in D_2. \\ \end{array} \\ \begin{array}{ll} \text{From equation (4.7), we can easily obtain} \\ (4.14) & \phi P_1[X,Y] = P_1(\nabla_X PY - \nabla_Y PX) - P_1(A_{FY}X - A_{FX}Y), \\ \text{for any } X, Y \in D_2. \\ \end{array} \\ \begin{array}{ll} \text{As } \phi P_1[X,Y] = 0, \ \forall \ X,Y \in D_2 \ \text{if and only if } P_1[X,Y] = 0, \ \text{in view of (4.13) and} \\ (4.14), D_2 \ \text{is integrable if and only if } (4.12) \ \text{holds.} \end{array}$

Acknowledgments. The authors would like to express their gratitude to the referee for valuable comments and suggestions.

References

- M. Atceken, On geometry of submanifolds of (LCS)_n-manifolds, Int. J. Math. and Math. Sci., (2012), 1-11.
- [2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, New York, 1976.
- [3] A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ., "Al, I. Cuza" Iasi. 27(1981), 163-170.
- [4] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.

- [5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata, 78(2)(1999), 183-199.
- [6] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42(1)(2000), 125-138.
- [7] U. C. De, A. A. Shaikh, Non-existence of proper semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 22(2)(1999), 179-183.
- [8] U. C. De, A. A. Shaikh, A. Sengupta, On LP-Sasakian manifolds with a coefficient α, Kyungpook Math. J., 42(2002), 177-186.
- U. C. De, A. A. Aqeel, A. A. Shaikh, Submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 28(2)(2005), 223-227.
- [10] R. S. Gupta, S. M. Khursheed Haider, M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Radovi Matematicki, 12(2004), 205-214.
- [11] S. K. Hui, M. Atceken, Contact warped product semi-slant submanifolds of (LCS)_nmanifolds, Acta Univ. Sapientiae, Mathematica, 3(2)(2011), 212-224.
- M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor, (N. S.) 30(1976), 239-245.
- [13] Kalpana, G. Guha, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Ganit, J. Bangladesh Math. Soc., 13(1993), 71-76.
- [14] V. A. Khan, M. A. Khan, Semi-slant submanifolds of trans-Sasakian manifolds, Sarajevo J. Math., 2(14)(2006), 83-93.
- [15] V. A. Khan, M. A. Khan, K. A. Khan, Slant and semi-slant submanifolds of Kenmotsu manifold, Mathematica Slovaca, 57(5)(2007), 483-494.
- [16] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39(1996), 183-198.
- [17] A. Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl., 3(1)(1998), 37-51.
- [18] K. Matsumoto, On Lorentzian almost para-contact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(1989), 151-156.
- [19] S. Prasad, R. H. Ojha, Lorentzian para-contact submanifolds, Publ. Math. Debrecen, 44(1994), 215-223.
- [20] N. Papaghiuc, Semi-slant submanifolds of Kahlerian manifold, An. Stiint. Univ., "Al, I. Cuza" Iasi., 9(1994), 55-61.
- [21] B. Prasad, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 21(2)(1998), 21-26.
- [22] A. A. Shaikh, On Lorentzian almost para-contact manifolds with a structure of the concircular type, Kyungpook Math. J., 43(2003), 305-314.
- [23] A. A. Shaikh, Some results on (LCS)_n-manifolds, J. Korean Math. Soc., 46(3)(2009), 449-461.
- [24] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes, J. Math. and Stat., 1(2005), 129-132.

- [25] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes II, Amer. J. Appl. Sci., 3(4)(2006), 1790-1794.
- [26] A. A. Shaikh, T. Basu, S. Eyasmin, On the existence of φ-recurrent (LCS)_nmanifolds, Extracta Mathematicae, 23(1)(2008), 71-83.

676