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Abstract. In this article, we study slant and semi-slant submanifolds of (LCS)n-

manifolds. Integrability conditions of distributions involved in definition of semi-slant

submanifolds of a (LCS)n-manifold have been obtained.

1. Introduction

The study of slant immersions was initiated by B.Y. Chen [4]. A. Lotta [16],
introduced and studied slant submanifolds of an almost contact metric manifold.
He also studied the intrinsic geometry of 3-dimensional non-anti-invariant slant sub-
manifolds of K-contact manifolds [17]. In 2000, Cabrerizo et al. studied slant sub-
manifolds of a Sasakian manifold and obtained many interesting results. They also
gave several examples of slant submanifolds of a Sasakian manifold [6]. The study of
semi-slant submanifolds was initiated by Papaghiuc [20]. Semi-slant submanifolds
are generalized version of CR-submanifolds. In 1999, Cabrerizo et al. [5] studied
semi-slant submanifolds of a Sasakian manifold. In [14], authors studied semi-slant
submanifolds of a trans-Sasakian manifold. On the otherhand, in 2003 [22], A.A.
Shaikh introduced the notion of Lorentzian concircular structure manifolds (briefly
(LCS)n-manifolds)and proved its existence by several examples and found its ap-
plications to the general relativity and cosmology in [24] and [25]. He also studied
some results on (LCS)n-manifolds in [23]. (LCS)n-manifolds are generalization
of LP-Sasakian manifolds introduced by Matsumoto [18]. In [11], S.K. Hui and
M. Atceken studied contact warped product semi-slant submanifolds of (LCS)n-
manifolds. Again, in [1], M. Atceken obtained some interesting results on invariant
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submanifolds of (LCS)n-manifolds.Thus motivated sufficiently, in this paper, we
study slant and semi-slant submanifolds of a (LCS)n-manifold. We observe that
the metric induced on a submanifold of a (LCS)n-manifold may be either degen-
erate or non-degenerate. In this article, we focus our attention on non-degenerate
submanifolds of (LCS)n-manifolds.

2. Preliminaries

Let M be an n-dimensional real differentiable manifold of differentiability class
C∞ endowed with a (1, 1) tensor field ϕ, a contravariant vector field ξ, a covariant
vector field η and a Lorentzian metric g of type (0, 2) such that for each point
p ∈ M , the tensor gp : TpM × TpM → R is a non-degenerate inner product of
signature (−,+, ...,+), where TpM denotes the tangent vector space of M at p and
R is the real number space, which satisfies

(2.1) η(ξ) = −1,

(2.2) ϕ2X = X + η(X)ξ,

(2.3) g(X, ξ) = η(X),

(2.4) g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

for all vector fields X and Y on M . Then such a structure (ϕ, ξ, η, g) is
termed as Lorentzian almost paracontact structure and the manifold M with a
Lorentzian paracontact structure is called a Lorentzian paracontact manifold [18].
Since a Lorentzian metric g is of index 1, Lorentzian manifold has not only space-
like vector fields but also timelike and lightlike vector fields. A non-zero vector
u ∈ TpM is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies
gp(u, u) < 0(resp.,≤ 0,= 0, > 0).

Definition 2.1. In a Lorentzian manifold (M, g), a vector field P defined by
g(X,P ) = A(X), for any X ∈ χ(M), is said to be a concircular vector field if

(∇XA)(Y ) = α {g(X,Y ) + ω(X)A(Y )} ,

where α is a non-zero scalar and ω is a closed 1-form.

LetM admits a unit timelike concircular vector field ξ. Then, on putting η(X) =
g(X, ξ) for any vector field X, we have

(2.5) (∇Xη)(Y ) = α {g(X,Y ) + η(X)η(Y )}, (α ̸= 0),

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g and α is a non-zero scalar function satisfying

(2.6) ∇Xα = (Xα) = dα(X) = ρη(X),

ρ is a certain scalar function given by ρ = −(ξα).

If we put

(2.7) ϕX = 1
α∇Xξ,
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then from (2.5) and (2.7), we have

(2.8) ϕX = X + η(X)ξ.

A Lorentzian manifold M together with the unit timelike concircular vector
field ξ, its associated 1-form η and a (1, 1)-tensor field ϕ is said to be a Lorentzian
concircular structure manifold (briefly (LCS)n-manifold) [22]. In particular, if we
take α = 1, then we can obtain the LP-Sasakian structure of Matsumoto [18]. In a
(LCS)n-manifold [22], the following relations hold:

(2.9) ϕξ = 0, η(ϕX) = 0,

(2.10) g(ϕX, Y ) = g(X,ϕY ),

(2.11) (∇Xϕ)(Y ) = α {g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X},

for all vector fields X,Y, Z on M . Again, if we put Φ(X,Y ) = g(X,ϕY ), where Φ
is a symmetric (0, 2) tensor field, then we have

(2.12) Φ(X,Y ) = 1
α (∇Xη)(Y ),

(2.13) (∇ZΦ)(X,Y ) = g(X, (∇Zϕ)Y ) = g((∇Zϕ)X,Y ),

(2.14) (∇ZΦ)(X,Y ) = α[g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) + g(Y, Z)η(X)],
(α ̸= 0)

for any vector fields X,Y, Z, on M .

Now, let M be a non-degenerate submanifold immersed in M . We denote the
Riemannian metric induced on M by same symbol g. Let TM and T⊥M be the
Lie algebra of vector fields tangential to M and normal to M respectively. Then
Gauss and Weingarten formulae are given by

(2.15) ∇XY = ∇XY + h(X,Y ),

(2.16) ∇XN = −ANX +∇⊥
XN,

for each X,Y ∈ TM and N ∈ T⊥M , where ∇ is the Levi-Civita connection on
M, ∇⊥ is the connection on the normal bundle T⊥M , h is the second fundamental
form of M and AN is the shape operator with respect to the normal section N ,
which are related by

(2.17) g(ANX,Y ) = g(h(X,Y ), N).

For any X ∈ TM and N ∈ T⊥M , we put

(2.18) ϕX = PX + FX,

where PX (resp. FX) is the tangential component (resp. normal component) of
ϕX. Similarly, for N ∈ T⊥M , we put

(2.19) ϕN = tN + fN ,

where tN (resp. fN) is the tangential component (resp. normal component) of
ϕN .
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From (2.10) and (2.15), it follows that

(2.20) g(PX, Y ) = g(X,PY ),

and therefore g(P 2X,Y ) = g(X,P 2Y ). Thus P 2 which is denoted by Q, is self
adjoint. We define the covariant derivatives of Q, P and F as

(2.21) (∇XQ)Y = ∇X(QY )−Q∇XY ,

(2.22) (∇XP )Y = ∇X(PY )− P∇XY ,

(2.23) (∇XF )Y = ∇⊥
X(FY )− F∇XY,

for any X,Y ∈ TM .

Using equations (2.15), (2.16), (2.17), (2.18), (2.19), (2.22) and (2.23) in (2.11),
we get

(2.24) (∇XP )Y = AFYX + th(X,Y )
+α {g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X},

(2.25) (∇XF )Y = −h(X,PY ) + fh(X,Y ).

3. Slant Submanifolds

A non-degenerate submanifold M of a (LCS)n-manifold M is said to be slant
if for any x ∈ M and any X ∈ TxM , linearly independent on ξ, the angle between
ϕX and TxM is a constant θ ∈ [0, π2 ], called the slant angle of M in M . The

invariant and anti-invariant submanifolds of M are slant submanifolds with slant
angle θ = 0, π2 . If the slant angle θ ̸= 0, π2 , then the slant submanifold is called a
proper slant submanifold. We suppose that the structure vector field ξ is tangent
to M. If we denote by D the distribution orthogonal to ξ in TM , we have the
orthogonal direct decomposition

TM = D ⊕ ⟨ξ⟩.

For a proper slant submanifold M of a (LCS)n-manifold M with slant angle θ,
we have

QX = − cos2 θ(X − η(X)ξ),

for any X ∈ TM .

Now, we have following results which characterize non-degenerate slant sub-
manifolds of a (LCS)n-manifold.

Theorem 3.1. Let M be a submanifold of a (LCS)n-manifold M such that ξ ∈
TM . Then, M is slant if and only if there exists a constant λ ∈ [0, 1] such that

(3.1) Q = −λ(I − η ⊗ ξ).

Furthermore, in such case, if θ is the slant angle of M , it satisfies λ = cos2 θ.
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Theorem 3.2. Let M be a slant submanifold of a (LCS)n-manifold M. Then at
each point x ∈ M , Q|D has only one eigenvalue λ, where λ = cos2 θ, θ being the
slant angle of M.

The proof of above theorems follow by using similar steps as in Theorem [2.2]
and Lemma [4.2], in [6] respectively.
Now, we have

Theorem 3.3. Let M be a slant submanifold of a (LCS)n-manifold M. Then
∇Q ̸= 0, i.e. Q is not parallel.

Proof. Let M be a slant submanifold of (LCS)n-manifold M and θ be the slant
angle of M. Then for any X,Y in TM, by equation (3.1), we get

(3.2) Q(∇XY ) = cos2 θ(−∇XY + η(∇XY )ξ),

(3.3) QY = cos2 θ(−Y + η(Y )ξ).

Differentiating (3.3) covariantly with respect to X, we get

(3.4) (∇XQ)Y +Q(∇XY ) = cos2 θ(−∇XY + η(∇XY )ξ)

+ cos2 θ(g(Y, αϕX)ξ + η(Y )αϕX).

Using equations (2.7) and (3.2) in (3.4), we obtain

(3.5) (∇XQ)Y = α cos2 θ(g(Y,X)ξ + 2η(X)η(Y )ξ + η(Y )X).

From (3.5), it is clear that ∇Q = 0, if and only if θ = π
2 . In view of Theorem

3.1 [9], the result follows. 2

Theorem 3.4. Let M be a submanifold of (LCS)n-manifold M. Then, M is slant
if and only if

(i) the endomorphism Q|D has only one eigen value at each point of M,

(ii) there exists a function λ :M → [0, 1] such that

(∇XQ)Y = λ[α(g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X)],

for any X,Y ∈ TM. If θ is the slant angle of M, then λ = cos2 θ.

Proof. LetM be slant, then the statements (i) and (ii) follow directly from Theorem
3.2 and equation (3.5) respectively.

Conversely, suppose that D = ⟨ξ⟩⊥ and assume that statements (i) and (ii) hold.
Let λ1 be the eigenvalue of Q|D, then QY = λ1Y for each Y ∈ D. Then from (ii),
we have

∇XQY = Q∇XY + λ[αg(X,Y )ξ],

i.e. (Xλ1)Y + λ1∇XY = Q∇XY + λαg(X,Y )ξ,

for any X ∈ TM. Since ∇XY and Q∇XY are perpendicular to Y, we observe that
λ1 is a constant on M.

Now, let X ∈ TM. Then we can write
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X = X + η(X)ξ,

where X ∈ D. Hence QX = QX. Since Q|D = λ1I, we have QX = λ1X and so
QX = λ1X which implies that QX = λ1(X − η(X)ξ). By taking µ = −λ1, the
above equation can be written as

QX = −µ(X − η(X)ξ).

As λ1(= −µ) is constant, by Theorem 3.1, M is slant in M and µ = cos2 θ. 2

4. Semi-slant Submanifolds

A non-degenerate submanifold M of a (LCS)n-manifold M is said to be semi-
slant submanifold if there exist two orthogonal distributions D1 and D2 on M such
that
(i) TM admits the orthogonal direct decomposition i.e.

TM = D1 ⊕D2 ⊕ ⟨ξ⟩,
(ii) the distribution D1 is an invariant distribution, i.e. ϕ(D1) = D1,

(iii) the distribution D2 is slant with slant angle θ ̸= 0 and ⟨ξ⟩ denotes the distri-
bution spanned by the structure vector field ξ.

It is clear that if θ = π
2 , then a semi-slant submanifold is a semi-invariant

submanifold. Moreover, if the dimension of D2 = 0, then M is an invariant sub-
manifold. If the dimension of D1 = 0 and θ = π

2 , then M is an anti-invariant
submanifold and M is a proper slant submanifold with slant angle θ, if dimension
of D1 = 0 and θ ̸= π

2 .

A semi-slant submanifold is called a proper semi-slant submanifold if dimension of
D1 and D2, both are not equal to zero and θ ̸= π

2 .

LetM be a non-degenerate semi-slant submanifold of a (LCS)n-manifoldM . Then
in view of Theorem 3.1 [9], the slant angle θ ̸= π

2 , i.e., D2 is not anti-invariant. For
X ∈ TM , we can write

(4.1) X = P1X + P2X + η(X)ξ,

where P1X ∈ D1 and P2X ∈ D2. Now, applying ϕ on (4.1), we obtain

(4.2) ϕX = ϕP1X + PP2X + FP2X.

Then, it is easy to observe that

(4.3) ϕP1X = PP1X, FP1X = 0 and PP2X ∈ D2.

Thus, we have

(4.4) PX = ϕP1X + PP2X and FX = FP2X.

Let µ denotes the orthogonal complement of ϕD2 in T⊥M , i.e., T⊥M = ϕD2 ⊕ µ.
Then µ is an invariant subbundle of T⊥M.

Now, we are in position to workout the integrability conditions of the distribu-
tions D1 and D2 involved in definition of a non-degenerate semi-slant submanifold
of a (LCS)n-manifold.
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Lemma 4.1. Let M be a semi-slant submanifold of a (LCS)n-manifold M. Then
we have:

∇Xξ = αϕX, h(X, ξ) = 0, for any X ∈ D1;

∇Y ξ = αPP2Y, h(Y, ξ) = αFP2Y, for any Y ∈ D2;

∇ξξ = 0, h(ξ, ξ) = 0.

Proof. The lemma follows from (2.7) by using (4.1), (4.2) and (2.15). 2

Theorem 4.2. Let M be a semi-slant submanifold of a (LCS)n-manifold M. Then
the distribution D1 ⊕D2 is integrable.

Proof. Let X,Y ∈ D1 ⊕D2. Then

g([X,Y ], ξ) = g(∇XY −∇YX, ξ)

= −g(Y,∇Xξ) + g(X,∇Y ξ)

= −g(Y, αϕX) + g(X,αϕY )

= α[−g(X,ϕY ) + g(X,ϕY )] = 0.

This implies that [X,Y ] ∈ D1 ⊕D2 and hence D1 ⊕D2 is integrable. 2

Theorem 4.3. Let M be a semi-slant submanifold of a (LCS)n-manifold M. Then
the invariant distribution D1 is integrable if and only if h(X,ϕY ) = h(Y, ϕX) for
all X,Y ∈ D1.

Proof. Let N ∈ T⊥M. We have

g(∇XϕY −∇Y ϕX,N) = g((∇Xϕ)Y − ϕ∇XY − (∇Y ϕ)X + ϕ∇YX,N).

By using equations (2.11) and (4.2) in above, we get

(4.5) g(FP2[X,Y ], N) = g(h(X,ϕY )− h(ϕX, Y ), N).

Thus D1 is integrable if and only if h(X,ϕY ) = h(ϕX, Y ), for X,Y ∈ D1.

Corollary 4.4. Let M be a semi-slant submanifold of a (LCS)n-manifold M.
Then, the distribution D1 ⊕ ξ is integrable if and only if h(X,ϕY ) = h(Y, ϕX) for
any X,Y ∈ D1 ⊕ ξ.

Proof. From equation (4.5), we have

(4.6) h(X,ϕY )− h(ϕX, Y ) = FP2[X,Y ],

for any X,Y ∈ D1⊕{ξ} . Hence, if D1⊕{ξ} is integrable, then we have h(X,ϕY ) =

h(ϕX, Y ).

Conversely, let h(X,ϕY ) = h(Y, ϕX) for any X,Y ∈ D1 ⊕ ξ.

Then equation (4.6) gives

FP2[X,Y ] = 0.

Since D2 is a slant distribution with slant angle θ(̸= 0), P2[X,Y ] must vanish.
Therefore, [X,Y ] ∈ D1 ⊕ {ξ} .
This completes the proof. 2
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Lemma 4.5. Let M be a semi-slant submanifold of a (LCS)n-manifold M. Then,
for any X,Y ∈ TM, we have

(4.7) P1(∇XϕP1Y ) + P1(∇XPP2Y ) = ϕP1∇XY + P1AFP2YX
+αη(Y )P1X,

(4.8) P2(∇XϕP1Y ) + P2(∇XPP2Y ) = P2(AFP2YX) + PP2∇XY + th(X,Y )
+αη(Y )P2X,

(4.9) η(∇XϕP1Y ) + η(∇XPP2Y ) = η(AFP2YX) + α(g(X,Y ) + 3η(Y )η(X)),
(4.10) h(X,ϕP1Y ) + h(X,PP2Y ) +∇⊥

XFP2Y = FP2∇XY + fh(X,Y ).

Proof. By using equations (2.11), (2.15), (2.16), (2.19), (4.1), (4.2), (4.3) and (4.4),
we get
(4.11) ∇XϕP1Y + h(X,ϕP1Y ) +∇XPP2Y + h(X,PP2Y )−AFP2YX

+∇⊥
XFP2Y = ϕP1∇XY + PP2∇XY + FP2∇XY + th(X,Y ) + fh(X,Y )

+αη(Y )P1X + αη(Y )P2X + α(g(X,Y )ξ + 3η(Y )η(X)ξ),
for any X,Y ∈ TM. Hence (4.7), (4.8), (4.9) and (4.10) follow from (4.11), by
identifying the components on D1, D2, ⟨ξ⟩ and T⊥M respectively.

Theorem 4.6. Let M be a semi-slant submanifold of a (LCS)n-manifold M. Then
the distribution D2 is integrable if and only if

(4.12) P1(∇XPY −∇Y PX) = P1(AFYX −AFXY ),
for any X,Y ∈ D2.

Proof. As in Theorem (4.2), we have

(4.13) g([X,Y ], ξ) = 0,

for any X,Y ∈ D2.
From equation (4.7), we can easily obtain
(4.14) ϕP1[X,Y ] = P1(∇XPY −∇Y PX)− P1(AFYX −AFXY ),
for any X,Y ∈ D2.
As ϕP1[X,Y ] = 0, ∀ X,Y ∈ D2 if and only if P1[X,Y ] = 0, in view of (4.13) and
(4.14), D2 is integrable if and only if (4.12) holds. 2

Acknowledgments. The authors would like to express their gratitude to the
referee for valuable comments and suggestions.

References

[1] M. Atceken, On geometry of submanifolds of (LCS)n-manifolds , Int. J. Math. and
Math. Sci., (2012), 1-11.

[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509,
Springer-Verlag, New York, 1976.

[3] A. Bejancu, N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An.
Stiint. Univ., “Al, I. Cuza” Iasi. 27(1981), 163-170.

[4] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.



Slant Submanifolds of (LCS)n-manifolds 675

[5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Semi-slant submanifolds
of a Sasakian manifold, Geom. Dedicata, 78(2)(1999), 183-199.

[6] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in
Sasakian manifolds, Glasgow Math. J., 42(1)(2000), 125-138.

[7] U. C. De, A. A. Shaikh, Non-existence of proper semi-invariant submanifolds of a
Lorentzian para-Sasakian manifold, Bull. Malays. Math. Soc., 22(2)(1999), 179-183.

[8] U. C. De, A. A. Shaikh, A. Sengupta, On LP-Sasakian manifolds with a coefficient
α, Kyungpook Math. J., 42(2002), 177-186.

[9] U. C. De, A. A. Aqeel, A. A. Shaikh, Submanifolds of a Lorentzian para-Sasakian
manifold, Bull. Malays. Math. Soc., 28(2)(2005), 223-227.

[10] R. S. Gupta, S. M. Khursheed Haider, M. H. Shahid, Slant submanifolds of a Ken-
motsu manifold, Radovi Matematicki, 12(2004), 205-214.

[11] S. K. Hui, M. Atceken, Contact warped product semi-slant submanifolds of (LCS)n-
manifolds , Acta Univ. Sapientiae, Mathematica, 3(2)(2011), 212-224.

[12] M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor, (N.
S.) 30(1976), 239-245.

[13] Kalpana, G. Guha, Semi-invariant submanifolds of a Lorentzian para-Sasakian man-
ifold, Ganit, J. Bangladesh Math. Soc., 13(1993), 71-76.

[14] V. A. Khan, M. A. Khan, Semi-slant submanifolds of trans-Sasakian manifolds, Sara-
jevo J. Math., 2(14)(2006), 83-93.

[15] V. A. Khan, M. A. Khan, K. A. Khan, Slant and semi-slant submanifolds of Kenmotsu
manifold, Mathematica Slovaca, 57(5)(2007), 483-494.

[16] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie,
39(1996), 183-198.

[17] A. Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J.
Geom. Appl., 3(1)(1998), 37-51.

[18] K. Matsumoto, On Lorentzian almost para-contact manifolds, Bull. of Yamagata
Univ. Nat. Sci., 12(1989), 151-156.

[19] S. Prasad, R. H. Ojha, Lorentzian para-contact submanifolds, Publ. Math. Debrecen,
44(1994), 215-223.

[20] N. Papaghiuc, Semi-slant submanifolds of Kahlerian manifold, An. Stiint. Univ., “Al,
I. Cuza” Iasi., 9(1994), 55-61.

[21] B. Prasad, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull.
Malays. Math. Soc., 21(2)(1998), 21-26.

[22] A. A. Shaikh, On Lorentzian almost para-contact manifolds with a structure of the
concircular type, Kyungpook Math. J., 43(2003), 305-314.

[23] A. A. Shaikh, Some results on (LCS)n-manifolds, J. Korean Math. Soc., 46(3)(2009),
449-461.

[24] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes, J. Math. and Stat.,
1(2005), 129-132.



676 S. S. Shukla, Mukesh Kumar Shukla and Rajendra Prasad

[25] A. A. Shaikh, K. K. Baishya, On concircular structure spacetimes II, Amer. J. Appl.
Sci., 3(4)(2006), 1790-1794.

[26] A. A. Shaikh, T. Basu, S. Eyasmin, On the existence of ϕ-recurrent (LCS)n-
manifolds, Extracta Mathematicae, 23(1)(2008), 71-83.


