• Title/Summary/Keyword: (전해 특성)

Search Result 1,168, Processing Time 0.029 seconds

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films (메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지)

  • Lee, Hyo Joong
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite (환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Yoo, Yeong Hwan;Cho, Jae Bong;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.593-598
    • /
    • 2016
  • We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

Poisoning of the Ni/MgO Catalyst by Alkali Carbonates in a DIR-MCFC (용융탄산염 연료전지에서 알칼리 탄산염에 의한 Ni/MgO 촉매의 피독)

  • Moon, Hyeung-Dae;Kim, Joon-Hee;Ha, Heung Yong;Lim, Tae-Hoon;Hong, Sung-Ahn;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.754-760
    • /
    • 1999
  • The properties of the catalyst for a direct internal reforming type molten carbonate fuel cell were examined by ICP, BET, CHN, EDS, and $H_2$ chemisorption. Potassium and lithium, the components of carbonate electrolyte, were transported to the catalyst during the operation of fuel cell, and the amounts of the deposited alkali elements were reduced in the order of inlet, outlet, and the middle. From the direct correlation between the amount of alkali and the physical properties such as BET surface area and Ni dispersion, and from the observation of the lump of the alkali species on the poisoned catalyst, it was confirmed that the physical blocking of the catalyst by alkali deposition was the main reason for the deactivation. Although the amount of alkali species was greater at the inlet than at the oulet, the catalyst sampled from the outlet had lower activity. This was caused by the chemical interaction between the alkali species and the catalyst at the outlet where temperature was highest in the cell body, which was detected by FT-IR analyses.

  • PDF

Electrochemical Behavior of Lithium-Iron Oxide Electrode and Measurement of Chemical Diffusion Coefficient of Lithium (리튬-철계 산화물 전극의 전기화학 거동 및 리튬의 화학확산 계수 측정)

  • Lee Joung-Jun;Chong Won-Jung;Ju Jeh-Beck;Sohn Tai-Won;Cho Won-Il;Cho Byung-Won;Kim Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.139-145
    • /
    • 2001
  • Various compositions of iron oxide based materials as a cathode of lithium secondary battery have been fabricated and tested with electrochemical method. A layered form of $LiFeO_2$ was synthesized by mixing and heating the initial materials of $FeCl_3\;6H_2O,\;LiOH$ and NaOH at low temperature. The effect of changing the precursors composition was investigated. As a result, when increasing the additive amount of NaOH, the capacity of the electrode is decreased but the performance and declining rate of capacity became smaller. $LiFeO_2$ synthesized with the weight ratio of $NaOH/FeCl_3/LiOH,\;2/1/7$ showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles. Charge-discharge tests of lithium cells with $LiFeO_2$ cathode having the layer structure were performed. This cell showed the reversibility in the range of 1.5-4.5V of cell voltage. By using CPR method, chemical diffusion coefficients were measured in 1M $LiPF_6/EC/DEC$ solution. The value of chemical diffusion coefficient decreased with increasing the lithium content x, In 0.5$10^{-11}^cm^2/s$.

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Application of Pulse Current Electrolysis to the Large Scale of Copper and Aluminium Substrates for Solar Selective Coatings on Solar Collectors (실 규모 태양열 집열판 제작을 위한 구리 및 알루미늄 기판에의 태양광 선택흡수박막 전착;Pulse Current Electrolysis 적용)

  • 이태규;김동형;김형택;여운택
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • It is one of the most important factors to enhance the efficiency of the solar collectors by in-creasing collecting efficiency and decreasing heat loss. The pulse electrodeposition method has been involved in this study to improve characteristics of the solar selective coating on 230cm${\times}$60cm substrates and electrical efficiency of the process. The composition of the electrolyte was 280 g/$\ell$ chromic acid, 15 g/$\ell$ propionic acid, and 10 g/$\ell$ appropriate additive. 230cm${\times}$60cm copper and aluminium sheets were utilized as the substrates. It has been observed that the black chrome coatings exhibited reasonable optical properties for commercialization when the plating parameters were properly controlled; the absorptance was 0.98 and 0.97 and omittance was 0.17 and 0.23 for copper and aluminium substrate, respectively. This study implies that the pulse current electrolysis method could be applied to the large scale substrates, and the various products can be avilable after the consideration of the thermal conductivity, heat transfer efficiency and cost problems of the substrates.

  • PDF

A Chemical Study of the Periodic Precipitation Reaction in Natural Rocks (자연 암석에서 나타나는 주기적침전반응의 화학적 연구)

  • Jun, Sang-Ho;Han, Mi-Ae
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.491-496
    • /
    • 2007
  • This study conducted a chemical experiment on the Leisegang phenomenon, which is known to be the principle of rhyolite formation, and analyzed the results. Even if the same chemical elements precipitated, the shape of Leisegang rings was different according to the condition of medium and depending on inner electrolyte and outer electrolyte. The experiment used agar, gelatin and mung-bean jelly as media. We prepared 0.01M inner electrolyte containing agar 1%, gelatin 2% and mung-bean jelly 5% and curdled the solution at room temperature for 12 hours and, as a result, we obtained viscosity optimal for experimenting on the diffusion of outer electrolyte, and Leisegang rings appeared clearly according to the characteristic of each chemical element. In $PbI_2$ with solubility product($K_{sp}$) of $7.9{\times}10^{-9}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $Pb(NO_3){_2}$ were narrow between 0.01cm and 0.12cmm but increased gradually, but in with of $8.3{\times}10^{-17}$ the intervals of Leisegang rings caused by the reaction of inner electrolyte 0.01M KI and outer electrolyte 25% $AgNO_3$ were between 0.7cm and 0.45cm and decreased gradually. This suggests that, in the chemical formation of Leisegang rings, the interval and size of the rings are correlated with the solubility product of the precipitates.

Analysis of the Redox Reaction for Polypyrrole Thin Film by Using a Quartz Crystal Analyzer (수정진동자 분석기(QCA)를 이용한 폴리피롤 박막의 산화-환원반응 해석)

  • Chang, Sang-Mok;Kim, Jong-Min;Park, Ji-Sun;Son, Tae-Il;Hiroshi, Muramatsu
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-51
    • /
    • 1998
  • In this work, the in-situ viscoelastic characteristics of electropolymerized polypyrrole (PPy) thin film were investigated in the electrolyte solutions of $NaClO_4$, $LiClO_4$, and $KClO_4$ by using quartz crystal analyzer (QCA). One side of quartz crystal was used as a working electrode mounted in a special fabricated QCA electrochemical ceil. The resonant frequency and resonant resistance diagram (F-R diagram) was used to interpret the viscoelastic characteristics of Pby thin film and compared with AFM photograph. The resonant frequency, resonant resistance, and current were measured to analyze the redox reaction behaviors when the cyclic voltammetry was performed using AT-cut quartz crystal electrode coated with galvanostatically polymerized Ppy film. The result suggests that the Ppy film polymerized onto the crystal behaves as a rigid elastic layer at the initial stage of electropolymerization, while the film becomes a viscoelastic layer the polymerization proceeds further. At the same time, the film thickness increases and some morphological changes take place due to the penetration of electrolyte solution into the film. These phenomena take place when cyclic voltammetry was performed using different electrolyte solution compared with polymerization process.

  • PDF

ON THE OCEANOGRAPHIC CONDITIONS OF OYSTER FARMAING AREA NEAR CHUNGMU (충무부근 굴 양식어장의 환경에 관하여)

  • LIM Du Byung;CHO Chang Hwan;KWON Woo Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 1975
  • Oceanographic conditions of the coastal water around Chungmu, one of the most important oyster farming areas in Korea, were studied from May to November in 1974 to find out the environmental influence to oyster farming. Six localities, Goseong Bay, Jaran Bay, off Saryangdo, Hansilpo, Tong-yeong Bay and Juklimpo were selected for monthly oceanographic observation and biological sampling. Flood current running westward brings saline water from the south-east and ebb current brings the low salinity water of Jinju Bay into this area. The waters in Juklimpo, Hansilpo and Tong-yeong Bay are slightly cooler and more saline than the waters in Goseong Bay, Jaran Bay and off Saryangdo. The amount of dissolved oxygen is lowest in September and Hansilpo has the least oxygen during summer. Silicate content is lower in waters of Tong-yeong Bay, Juklimpo and off Saryangdo than those of Goseong Bay, Hansilpo and Jaran Bay. Suspended matter in this area ranges from 7.4 to 16.6 mg/l and scarce in Jaran Bay, Juklimpo and off Saryangdo. Chlorophyll a shows large seasonal variation and local fluctuation. Composition of phyto-plankton reveals the difference between the waters of Goseong Bay, Jaran Bay and off Saryangdo and the waters of Hansilpo, Tong-yeong Bay and Juklimpo. The growth of oyster was good in Juklimpo, Tong-yeong Bay and Goseong Bay and worst in Hansilpo. The highest mortality was observed $82\%$ in the waters off Saryangdo.

  • PDF

Fabrication of Small SOFC Stack Based on Anode-Supported Unit Cells and Its Power Generating Characteristics (음극지지형 단전지를 사용한 소형 SOFC 스택의 제조 및 출력특성)

  • Jung, Hwa-Young;Kim, Woo-Sik;Choi, Sun-Hee;Kim, Joosun;Lee, Hae-Weon;Ko, Haengjin;Lee, Ki-Chun;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.777-782
    • /
    • 2004
  • In this research, $5\times5cm^2$ unit cells were fabricated via liquid condensation process and uniaxial pressing followed by the screen printing of electrolyte and cathode layer. The SOFC stack was assembled with unit cells, gasket-type sealant and metal interconnect. The stack was designed to have a single column with internal-manifold and cross-flow type gas-channels. The SOFC stack produced 15 W, which is $50\%$ of the maximum power being expected from the maximum power density of the unit cell. Controlling factors for the proper operation of the SOFC stack and other designing factors of stack manifold and gas channels were discussed.