DOI QR코드

DOI QR Code

Quantum Dot-Sensitized Solar Cells Based on Mesoporous TiO2 Thin Films

메조포러스 이산화티타늄 박막 기반 양자점-감응 태양전지

  • Lee, Hyo Joong (Department of Chemistry and Bioactive Material Sciences, Chonbuk National University)
  • 이효중 (전북대학교 화학과/생리활성소재 과학과)
  • Received : 2015.02.08
  • Accepted : 2015.02.13
  • Published : 2015.02.28

Abstract

This review article summarizes the recent progress of quantum dot (QD)-sensitized solar cells based on mesoporous $TiO_2$ thin films. From the intrinsic characteristics of nanoscale inorganic QDs with various compositions, it was possible to construct a variety of 3rd-generation thin film solar cells by solution process. Depending on preparation methods, colloidal QD sensitizers are pre-prepared for later deposition onto the surface of $TiO_2$ or in-situ deposition of QDs from chemical bath is done for direct growth of QD sensitizers over substrates. Recently, colloidal QD sensitizers have shown an overall power conversion efficiency of ~7% by a very precise control of composition while a representative CdS/CdSe from chemical bath deposition have done ~5% with polysulfide electrolytes. In the near future, it is necessary to carry out systematic investigations for developing new hole-conducting materials and controlling interfaces within the cell, thus leading to an enhancement of both open-circuit voltage and fill factor while keeping the current high value of photocurrents from QDs towards more efficient and stable QD-sensitized solar cells.

본 총설은 다공성의 메조포러스 이산화티타늄 박막을 기반으로 하는 양자점-감응 태양 전지의 최근 발전 과정에 대해 정리하였다. 나노스케일의 무기물 양자점이 가지는 본질적 특성에 기반하고 다양한 양자점 구성 물질을 이용하여, 용액-공정 기반의 다양한 3세대 박막 태양전지를 만들 수 있었다. 양자점 감응제는 준비하는 방법에 따라 크게 2가지로 나눌 수 있는데, 첫 번째는 콜로이드 형태로 용액상에서 준비한 다음 $TiO_2$ 표면에 붙이는 것이고 두 번째는 양자점 전구체가 녹아있는 화학조를 이용하여 직접 $TiO_2$ 표면에 성장시키는 것이다. 폴리썰파이드 전해질을 사용하여, 콜로이드 양자점 감응제의 경우는 최근 들어 정밀한 조성 조절을 통하여 전체 광전 변환효율이 ~7%에 이르렀고 화학조 침전법을 이용하여 준비된 대표적 감응제인 CdS/CdSe는 ~5%의 효율을 보이고 있다. 앞으로는 지금까지 보고된 양자점 감응제의 뛰어난 광전류 생성 능력을 유지하면서, 새로운 정공 전달체의 개발 및 계면 조절을 통한 개방 전압과 채움 상수의 개선을 통한 효율 증가 및 안정성에 관한 체계적 연구가 필요한 상황이다.

Keywords

References

  1. P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, Chem. Rev., 110, 6664 (2010). https://doi.org/10.1021/cr100243p
  2. A. J. Bard, J. Phys. Chem., 86, 172 (1982). https://doi.org/10.1021/j100391a008
  3. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  4. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993). https://doi.org/10.1021/ja00072a025
  5. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000). https://doi.org/10.1146/annurev.matsci.30.1.545
  6. B. A. Kairdolf, A. M. Smith, T. H. Stokes, M. D. Wang, A. N. Young, and S. Nie, Annu. Rev. Anal. Chem., 6, 143 (2013). https://doi.org/10.1146/annurev-anchem-060908-155136
  7. N. N. Ledentsov, Semicond. Sci. Technol., 26, 014001 (2011). https://doi.org/10.1088/0268-1242/26/1/014001
  8. D. Bozyigit and V. Wood, MRS Bull., 38, 731 (2013). https://doi.org/10.1557/mrs.2013.180
  9. A. Zaban, O. I. Micic, B. A. Gregg, and A. J. Nozik, Langmuir, 14, 3153 (1998). https://doi.org/10.1021/la9713863
  10. W. Lee, J. Lee, S. Lee, W. Yi, S.-H. Han, and B. W. Cho, Appl. Phys. Lett., 92, 153510 (2008). https://doi.org/10.1063/1.2911740
  11. G. Hodes, J. Phys. Chem. C, 112, 17778 (2008). https://doi.org/10.1021/jp803310s
  12. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010). https://doi.org/10.1021/cr900356p
  13. H. Nusbaumer, S. M. Zakeeruddin, J.-E. Moser, and M. Gratzel, Chem. Eur. J., 9, 3756 (2003). https://doi.org/10.1002/chem.200204577
  14. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, J. Phys. Chem. B, 110, 25451 (2006). https://doi.org/10.1021/jp064817b
  15. H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grazel, and M. K. Nazeeruddin, J. Phys. Chem. C, 112, 11600 (2008). https://doi.org/10.1021/jp802572b
  16. V. Chakrapani, D. Baker, and P. V. Kamat, J. Am. Chem. Soc., 133, 9607 (2011). https://doi.org/10.1021/ja203131b
  17. Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 19, 604 (2009). https://doi.org/10.1002/adfm.200800940
  18. Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua, and X. Zhong, ACS Nano, 6, 3982 (2012). https://doi.org/10.1021/nn300278z
  19. H. McDaniel, N. Fuke, N. S. Makarov, J. M. Pietryga, and V. I. Klimov, Nat. Comm., 4, 2887 (2013).
  20. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, and X. Zhong, ACS Nano, 7, 5215 (2013). https://doi.org/10.1021/nn400947e
  21. J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, and J. Bisquert, J. Am. Chem. Soc., 135, 15913 (2013). https://doi.org/10.1021/ja4079804
  22. Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and J. Bisquert, J. Am. Chem. Soc., 136, 9203 (2014). https://doi.org/10.1021/ja504310w
  23. S. Jiao, Q. Shen, I. Mora-Sero, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, and J. Bisquert, ACS Nano, 9, 908 (2015). https://doi.org/10.1021/nn506638n
  24. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, J. Photochem. Photobiol. A, 181, 306 (2006). https://doi.org/10.1016/j.jphotochem.2005.12.012
  25. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27, 85 (2004). https://doi.org/10.1007/BF02708491
  26. R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, J. Phys. Chem. B, 106, 7578 (2002). https://doi.org/10.1021/jp020453l
  27. H. J. Lee, P. Chen, S.-J. Moon, S. Frederic, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel, and Md. K. Nazeeruddin, Langmuir, 25, 7602 (2009). https://doi.org/10.1021/la900247r
  28. H. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel, and M. K. Nazeeruddin, Nano Lett., 9, 4221 (2009). https://doi.org/10.1021/nl902438d
  29. J. H. Bang and P. V. Kamat, ACS Nano, 3, 1467 (2009). https://doi.org/10.1021/nn900324q
  30. H. J. Lee, J. Bang, J. Park, S. Kim, and S.-M. Park, Chem. Mater., 22, 5636 (2010). https://doi.org/10.1021/cm102024s
  31. J. G. Radich, R. Dwyer, and P. V. Kamat, J. Phys. Chem. Lett., 2, 2453 (2011). https://doi.org/10.1021/jz201064k
  32. C. S. Kim, S. H. Choi, and J. H.Bang, ACS Appl. Mater. Interfaces., 6, 22078 (2014). https://doi.org/10.1021/am505473d
  33. S.-Y. Lee, M.-A. Park, J.-H. Kim, H. Kim, C.-J. Choi, D.-K. Lee, and K.-S. Ahn, J. Electrochem. Soc. 160, H847 (2013). https://doi.org/10.1149/2.115311jes
  34. M. Deng, Q. Zhang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, Nanoscale Res. Lett., 5, 986 (2010). https://doi.org/10.1007/s11671-010-9592-3
  35. H. J. Lee, H. C. Leventis, S.-J. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nuesch, T. Geiger, S. M. Zakeeruddin, M. Grtzel, and Md. K. Nazeeruddin, Adv. Funct. Mater., 19, 2735 (2009). https://doi.org/10.1002/adfm.200900081
  36. Y. C. Choi, T. N. Mandal, W. S. Yang, Y. H. Lee, S. H. Im, J. H. Noh, and S. I. Seok, Angew. Chem. Int. Ed., 53, 1329 (2014). https://doi.org/10.1002/anie.201308331
  37. Y. C. Choi, Y. H. Lee, S. H. Im , J. H. Noh, T. N. Mandal, W. S. Yang , and S. I. Seok, Adv. Energy Mater., 4, 1301680 (2014). https://doi.org/10.1002/aenm.201301680
  38. Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, and S. I. Seok, Adv. Funct. Mater., 24, 3587 (2014). https://doi.org/10.1002/adfm.201304238
  39. S. Ito, K. Tsujimoto, D.-C. Nguyen, K. Manabe, and H. Nishino, Int. J. of Hydrogen Energy, 38, 16749 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.069
  40. I. J. Kramer and E. H. Sargent, ACS Nano, 5, 8506 (2011). https://doi.org/10.1021/nn203438u
  41. Y. Zhou, M. Eck, and M. Kruger, Energy Environ. Sci., 3, 1851 (2010). https://doi.org/10.1039/c0ee00143k
  42. P. V. Kamat, J. Phys. Chem. C, 112, 18737 (2008). https://doi.org/10.1021/jp806791s
  43. J. H. Rhee, C.-C. Chung, and W.-G. Diau, NPG Asia Mater., 5, e68 (2013). https://doi.org/10.1038/am.2013.53
  44. I. Hod and A. Zaban, Langmuir, 30, 7264 (2014). https://doi.org/10.1021/la403768j