• Title/Summary/Keyword: $TiO_2$ layer

Search Result 1,092, Processing Time 0.032 seconds

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

A Study on Thermal Stability of Ga-doped ZnO Thin Films with a $TiO_2$ Barrier Layer

  • Park, On-Jeon;Song, Sang-Woo;Lee, Kyung-Ju;Roh, Ji-Hyung;Kim, Hwan-Sun;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.434-436
    • /
    • 2013
  • Ga-doped ZnO (GZO) was substitutes of the SnO2:F films on soda lime glass substrate in the photovoltaic devices such as CIGS, CdTe and DSSC due to good properties and low cost. However, it was reported that the electrical resistivity of GZO is unstable above $300^{\circ}C$ in air atmosphere. To improve thermal stability of GZO thin films at high temperature above $300^{\circ}C$ an $TiO_2$ thin film was deposited on the top of GZO thin films as a barrier layer by Pulsed Laser Deposition (PLD) method. $TiO_2$ thin films were deposited at various thicknesses from 25 nm to 100 nm. Subsequently, these films were annealed at temperature of $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ in air atmosphere for 20 min. The XRD measurement results showed all the films had a preferentially oriented ( 0 0 2 ) peak, and the intensity of ( 0 0 2 ) peak nearly did not change both GZO (300 nm) single layer and $TiO_2$ (50 nm)/GZO (300 nm) double layer. The resistivity of GZO (300 nm) single layer increased from $7.6{\times}10^{-4}{\Omega}m$ (RT) to $7.7{\times}10^{-2}{\Omega}m$ ($500^{\circ}C$). However, in the case of the $TiO_2$ (50 nm)/GZO (300 nm) double layer, resistivity showed small change from $7.9{\times}10^{-4}{\Omega}m$ (RT) to $5.2{\times}10^{-3}{\Omega}m$ ($500^{\circ}C$). Meanwhile, the average transmittance of all the films exceeded 80% in the visible spectrum, which suggests that these films will be suitable for photovoltaic devices.

  • PDF

ALD를 이용하여 살펴본 CdSe/CdS Quantum Dot-sensitized Solar Cell에서의 TiO2 Passivation 효과

  • Park, Jin-Ju;Lee, Seung-Hyeop;Seol, Min-Su;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.370-370
    • /
    • 2011
  • ZnO 나노 라드 위에 Quantum dot을 형성하고 최종적으로 TiO2를 Atomic Layer Deposition방법으로 증착하여, 그 passivation 효과가 solar cell의 효율에 미친 영향에 대한 실험을 진행하였다. 암모니아 솔루션을 이용한 Hydrothermal 방법으로 수직한 1차원 형태의 ZnO 나노라드를 TCO 기판 위에 성장시킨다. 여기에 잘 알려진 SILAR와 CBD 방법으로 CdS, CdSe 양자점을 증착한다. 그리고 amorphous TiO2로 표면을 덮는 과정을 거치는데, TiO2가 좁은 간격으로 형성된 ZnO라드 구조 위에서 균일하고 정밀하게 증착되도록 하기 위해 Atomic Layer Deposition을 이용하였다. 사용된 precursor는 Titanium isopropoxide와 H2O이며, 실험상에서 0~5 nm 두께의 TiO2 박막을 형성해 보았다. 다양한 분석 방법을 통해 TiO2/QDs/ZnO의 shell-shell-core 구조를 조사했다. (Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS)). 이를 solar cell에 적용하고 I-V curve를 통해 그 효율을 확인하였으며, Electrochemical Impedance Spectroscopy (EIS)를 통해서 재결합 측면에서 나타나는 변화 양상을 확인하였다.

  • PDF

Study on the Thin-film Transistors Based on TiO2 Active-channel Using Atomic Layer Deposition Technique (원자층 증착 기술을 이용한 TiO2 활성층 기반 TFT 연구)

  • Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.415-418
    • /
    • 2015
  • In this paper, $TiO_2$ based thin-film transistors (TFTs) were fabricated using by an atomic layer deposition with high aspect ratio and excellent step coverage. $TiO_2$ semiconducting layer was deposited showing a rutile phase through the rapid thermal annealing process, and exhibited TFT characteristics with a $200{\mu}m$ channel length of low-leakage currents (none of current flow during off-state), stable threshold voltages (-10 V ~ 0 V), and a much higher on/off current ratio (<$10^5$), respectively.

Atomic Layer-by-Layer Growth of $BaTiO_3/SrTiO_3$ Oxide Artificial Lattice in Laser Molecular Beam Epitaxy System Combined Reflection High Energy Electron Diffraction (Reflection High Energy Electron Diffraction이 결합된 Laser Molecular Beam Epitaxy System에서 $BaTiO_3/SrTiO_3$ 산화물 인공격자의 Layer-by-Layer 성장)

  • Lee, Chang-Hun;Kim, Lee-Jun;Jeon, Seong-Jin;Kim, Ju-Ho;Choe, Taek-Jip;Lee, Jae-Chan
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2003.10a
    • /
    • pp.179.2-179
    • /
    • 2003
  • PDF

Fabrication of YBCO superconducting film with $CeO_{2}/BaTiO_{3}$double buffer layer ($CeO_{2}/BaTiO_{3}$ 이중완충막을 이용한 YBCO 박막 제작)

  • 김성민;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.790-793
    • /
    • 2000
  • We have fabricated good quality superconducting YBa$_2$Cu$_3$$O_{7-x}$(YBCO) thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrates with CeO$_2$and BaTiO$_3$buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. YBCO film with CeO$_2$ single buffer layer shows T$_{c}$ of 71.64 K and the grain size less than 0.1 ${\mu}{\textrm}{m}$. When BaTiO$_3$is used as a single buffer layer, the grain size of YBCO is observed to be larger than that of YBCO/CeO$_2$by 200 times and the transition temperature of the film is enhanced to be about 84 K. CeO$_2$/BaTiO$_3$double buffer layer has been adopted to enhance the superconducting properties, which results in the enhancement of the critical temperature and the critical current density to be about 85 K and 8.4 $\times$ 10$^4$ A/cm$^2$ at 77 K, respectively mainly due to the enlargement of the grain size of YBCO film.ilm.

  • PDF

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers (용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구)

  • Shin, Seungchul;Kim, Suhyeon;Jang, Seunghun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.69-72
    • /
    • 2020
  • In this study, the inverted structured electroluminescence (EL) devices were fabricated with double electron transport layers (ETLs). The conduction band minimum (CBM) of TiO2 NPs is lower than SnO2 NPs. Therefore, it is expected that inserting TiO2 NPs between the SnO2 layer and the emission layer (EML) will reduce the energy barrier and transport electrons smoothly. The quantum dot light emitting diodes (QLEDs) with double ETLs showed the enhanced emission characteristics than those with only SnO2 layer.

Effect of Plasma Treatment on TiO2/TiO2-x Resistance Random Access Memory (플라즈마 표면처리가 TiO2/TiO2-x 저항 변화형 메모리에 미치는 영향)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.454-459
    • /
    • 2020
  • In this study, a TiO2/TiO2-x-based resistance variable memory was fabricated using a DC/RF magnetron sputtering system and ALD. In order to analyze the effect of oxygen plasma treatment on the performance of resistance random access memory (ReRAM), the TiO2/TiO2-x-based ReRAM was evaluated by applying RF power to the TiO2-x oxygen-holding layer at 30, 60, 90, 120, and 150 W, respectively. The ReRAM was fabricated, and the electrical and surface area performances were compared and analyzed. In the case of ReRAM without oxygen plasma treatment, the I-V curve had a hysteresis curve shape, but the width was very small, with a relatively high surface roughness of the oxygen-retaining layer. However, in the case of oxygen plasma treatment, the HRS/LRS ratio for the I-V curve improved as the applied RF power increased; stable improvement was also noted in the surface roughness of the oxygen-retaining layer. It was confirmed that the low voltage drive was not smooth due to charge trapping in the oxygen diffusion barrier layer owing to the high intensity ReRAM applied with an RF power of approximately 150 W.

Removal of Methylene Blue from Water Using Porous $TiO_2$/Silica Gel Prepared by Atomic Layer Deposition

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.160-160
    • /
    • 2011
  • In the present work, $TiO_2$ fiilms supported by porous silica gel with high surface area synthesized by atomic layer deposition(ALD). Porous structure of silica substrate could be maintained even after deposit large amount of $TiO_2$ (500 cycles of ALD process), suggesting the differential growth mode of $TiO_2$ on top surface and inside the pore. All the $TiO_2$-covered silica samples showed improved MB adsorption abilities, comparing to bare one. In addition, when silica surface was covered with $TiO_2$ films, MB adsorption capacity was almost fully recovered by re-annealing process (500$^{\circ}C$, for 1 hr, in ambient pressure), whereas MB adsorption capacity of bare silica was decreased after re-heaing process. FT-IR study demonstrated that $TiO_2$ film could prevent deposition of surface-bound intermediate species during thermal decomposition of adsorbed MB molecules. Photocatalytic activity of $TiO_2$/silica sample was also investigated.

  • PDF