DOI QR코드

DOI QR Code

A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers

용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구

  • Shin, Seungchul (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Suhyeon (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Jang, Seunghun (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Jiwan (Department of Advanced Materials Engineering, Kyonggi University)
  • 신승철 (경기대학교 신소재공학과) ;
  • 김수현 (경기대학교 신소재공학과) ;
  • 장승훈 (경기대학교 신소재공학과) ;
  • 김지완 (경기대학교 신소재공학과)
  • Received : 2020.08.24
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

In this study, the inverted structured electroluminescence (EL) devices were fabricated with double electron transport layers (ETLs). The conduction band minimum (CBM) of TiO2 NPs is lower than SnO2 NPs. Therefore, it is expected that inserting TiO2 NPs between the SnO2 layer and the emission layer (EML) will reduce the energy barrier and transport electrons smoothly. The quantum dot light emitting diodes (QLEDs) with double ETLs showed the enhanced emission characteristics than those with only SnO2 layer.

본 연구에서는 SnO2 nanoparticles (NPs) 위에 TiO2 NPs를 코팅하여 Quantum Dots Light Emitting Diodes (QLEDs)를 제작하였다. TiO2 NPs는 SnO2 NPs보다 conduction band minimum (CBM) 준위가 낮다. 따라서 SnO2 층과 발광층의 CBM 준위 사이에 위치해 에너지 장벽을 감소시키고, 전자의 이동을 원활하게 할 것으로 예상하였다. QLEDs는 inverted 구조로 제작되었으며, SnO2 단일층을 사용한 경우보다 발광 특성이 향상된 것을 확인하였다. 이중 전자수송층을 적용한 이번 연구를 통해 SnO2를 QLEDs에 전자수송층으로 적용할 수 있을 것으로 기대한다.

Keywords

References

  1. M. Y. Ha, "A study on the electrical and optical properties of QLEDs using ZnO nanoparticles electron transport layer", in Ph.D. Thesis, pp.1-146, Soonchunhyang University, Chungcheongnam-do (2019).
  2. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays", Optical Materials Express, 2(5), 594 (2012). https://doi.org/10.1364/OME.2.000594
  3. K. H. Lee, C. Y. Han, H. D. Kang, H. Ko, C. Lee, J. Lee, N. S. Myoung, S. Y. Yim, and H. Yang, "Highly Efficient, Color-Reproducible Full-Color Electroluminescent Devices Based on Red/Green/Blue Quantum Dot-Mixed Multilayer", ACS Nano, 9(11), 10941 (2015). https://doi.org/10.1021/acsnano.5b05513
  4. M. Hu, L. Zhang, S. She, J. Wu, X. Zhou, X. Li, D. Wang, J. Miao, G. Mi, H. Chen, Y. Tian, B. Xu, and C. Cheng, "Electron Transporting Bilayer of SnO$_2$ and TiO$_2$ Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells", Sol. RRL, 4, 1900331 (2020). https://doi.org/10.1002/solr.201900331
  5. S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park, and J. Choi, "Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells ($\eta$ = 21.1%)", ACS Energy Lett., 2, 2667 (2017). https://doi.org/10.1021/acsenergylett.7b00888
  6. W. Han and H. H. Park, "The Effect of Crystallinity on the Photoluminescence of TiO2 Nanoparticles", J. Microelectron. Packag. Soc, 26(1), 23 (2019). https://doi.org/10.6117/KMEPS.2019.26.1.0023
  7. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, "High-performance crosslinked colloidal quantum-dot lightemitting diodes", Nature Photonics, 3, 341 (2009). https://doi.org/10.1038/nphoton.2009.92
  8. M. B. Kim, C. G. Yoon, and J. W. Kim, "A Comparison Study on Various Quantum Dots Light Emitting Diodes Using TiO$_2$ Nanoparticles as Inorganic Electron Transport Layer", J. Microelectron. Packag. Soc. 26(3), 71 (2019).
  9. F. Gu, S. F. Wang, C. F. Song, M. K. Lu, Y. X. Qi, G. J. Zhou, D. Xu, and D. R. Yuan, "Synthesis and luminescence properties of $SnO_2$ nanoparticles", Chemical Physics Letters, 372, 451 (2003). https://doi.org/10.1016/S0009-2614(03)00440-8
  10. M. Aziz, S. S. Abbas, and W. R. W. Baharom, "Size-controlled synthesis of $SnO_2$ nano particles by sol-gel method", Materials Letters, 91, 31 (2013). https://doi.org/10.1016/j.matlet.2012.09.079

Cited by

  1. Effect of KHCO3 Concentration Using CuO Nanowire for Electrochemical CO2 Reduction Reaction vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.011