• Title/Summary/Keyword: $SnO_2$thin film

Search Result 340, Processing Time 0.033 seconds

CO2 Gas Responsibility of SnO5 Thin Film Depending on the Annealing Temperature (SnO2 박막의 열처리 온도에 따른 CO2가스 반응성)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.75-78
    • /
    • 2017
  • The $CO_2$ gas responsibility of $SnO_2$ thin films was researched with various annealing temperatures. $SnO_2$ was prepared on n-type Si substrate by RF magnetron sputtering system and annealed in a vacuum condition. The bonding structure of $SnO_2$ was changed from amorphous to crystal structure with increasing the annealing temperature, and the content of oxygen vacancy was researched the highest of the annealed at $60^{\circ}C$. The $SnO_2$ annealed at $60^{\circ}C$ had the characteristics of the highest capacitance. The special properties of $CO_2$ gas responsibility was found at the $SnO_2$ thin film annealed at $60^{\circ}C$ with amorphous structure because of the combination with the oxygen vacancies and $CO_2$ gases changed the resistivity. The amorphous structure enhanced the responsibility at the $SnO_2$ surface and the conductivity of $SnO_2$ thin film.

  • PDF

Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors (기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성)

  • Kim, Seon-Hoon;Park, Shin-Chul;Kim, Jin-Hyuk;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

Electrical and Optical Properties of SnO$_2$: F Thin Films by Reactive DC Magnetron Sputtering Method (반응성 DC 마그네트론 스퍼터법에 의한 SnO$_2$ : F 박막의 전기광학적 특성)

  • 정영호;김영진;신재혁;송국현;신성호;박정일;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.125-133
    • /
    • 1999
  • Fluorine-doped $SnO_2$ thin films were deposited on soda-lime glass substrates by reactive DC magnetron sputtering method. Crystallinity as well as electrical and optical properties of $SnO_2$ : F thin film were investigated as the variations of deposition conditions such as substrate temperature, DC Power, $O_2$ gas pressure, $SF_6$ gas pressure. $SnO_2$ : F thin film deposited with 5% $SF_6$ gas pressure showed electrical resistivities of $2.5\times10^{-3}$cm with the average optical transparency (about 80%) These electrical and optical properties were found to be related to the crystallinity of $SnO_2$ : F thin films.

  • PDF

The Hydrogen Gas Sensing Characteristics of the Pd-doped $SnO_2$ Thin Films Prepared by Sputtering (스퍼터링법으로 제조된 Pd-doped $SnO_2$ 박막의 수소가스 감도 특성)

  • 차경현;김영우;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.701-708
    • /
    • 1993
  • Pd-doped SnO2 thin films for hydrogen gas sensing were fabricated by reactive fo magnetron sputtering and were studied on effects of film thickness and Pd doping content. Pd doping caused the optimum sensor operation temperature to reduce down to ~25$0^{\circ}C$ and also enhanced gas sensitivity, compared with undoped SnO2 film. Gas sensitivity depended on the film thickness. The sensitivity increased with decreasing the film thickness, showing maximum sensitivities at the thickness of 730$\AA$ and 300~400$\AA$ for the undoped SnO2 and the Pd-doped SnO2 film, respectively. Further decrease of the film thickness beyond these thickness ranges, however, resulted in the reduction of sensitivity again.

  • PDF

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.