• 제목/요약/키워드: $SnO_2$-doped $In_2O_3$

검색결과 148건 처리시간 0.026초

Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성 (Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films)

  • 김근우;서용준;성창훈;박근영;조호제;허시내;구본흔
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Ta Doped SnO2 Transparent Conducting Films Prepared by PLD

  • Cho, Ho Je;Seo, Yong Jun;Kim, Geun Woo;Park, Keun Young;Heo, Si Nae;Koo, Bon Heun
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.435-440
    • /
    • 2013
  • Transparent and conducting thin films of Ta-doped $SnO_2$ were fabricated on a glass substrate by a pulse laser deposition(PLD) method. The structural, optical, and electrical properties of these films were investigated as a function of doping level, oxygen partial pressure, substrate temperature, and film thickness. XRD results revealed that all the deposited films were polycrystalline and the intensity of the (211) plane of $SnO_2$ decreased with an increase of Ta content. However, the orientation of the films changed from (211) to (110) with an increase in oxygen partial pressure (40 to 100 mTorr) and substrate temperature. The crystallinity of the films also increased with the substrate temperature. The electrical resistivity measurements showed that the resistivity of the films decreased with an increase in Ta doping, which exhibited the lowest resistivity (${\rho}{\sim}1.1{\times}10^{-3}{\Omega}{\cdot}cm$) for 10 wt% Ta-doped $SnO_2$ film, and then increased further. However, the resistivity continuously decreased with the oxygen partial pressure and substrate temperature. The optical bandgap of the 10 wt% Ta-doped $SnO_2$ film increased (3.67 to 3.78 eV) with an increase in film thickness from 100-700 nm, and the figure of merit revealed an increasing trend with the film thickness.

D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계 (Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films)

  • 이정일;최시경
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

초음파분무법에 의해 제작된 $SnO_2(:F)$ 박막의 특성 (Properties of fluorine-doped $SnO_2$ films prepared by the ultrasonic spray deposition)

  • Byung Seok Yu;Sei Woong Yoo;Jeong Hoon Lee
    • 한국결정성장학회지
    • /
    • 제4권3호
    • /
    • pp.294-305
    • /
    • 1994
  • 초음파 분무법에 의한 $SnO_2(:F)$박막의 제막시 DBDA와 $SnCl_4.5H_2O$를 출발물질로 사용하은 경우 제막조건이 전기적, 광학적 그리고 표면형상 드의 특성에 미치는 영향에 대해 조사하였다. 박막의 비저항은 출발물질에 관계없이 용액내의 F/Sn의 비가 0.6일 때까지는 급격히 증가하였으며, $SnO_2.5H_2O$를 출발물질로 사용한 경우 DBDA의 경우보다 낮았다. 용액내의 F/Sn의 비가 1일 때 출발물질로서, $SnO_2.5H_2O$과 DBDA를 사용한 경우 광투과율은 각각 83%와 85%로서 DBDA 사용한 경우가 다소 높았다.

  • PDF

아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성 (Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile)

  • 박영호;이창섭
    • 한국가스학회지
    • /
    • 제13권2호
    • /
    • pp.23-29
    • /
    • 2009
  • Pt, Pd, In 등의 촉매금속을 사용하여 아세토나이트릴 유독가스에 대한 감도를 향상시키는 SnO2 가스센스에 대하여 연구하였다. Metal-SnO2 후막은 백금전극이 내장된 알루미나 지지체의 스크린법으로 제작되었다. 본 센서의 특성은 검출가스의 농도의 함수로 반응기내 각센서의 전기적 저항을 측정하여 조사하였으며, 10-50ppm 범위의 유독가스 농도에 대하여 검지 측정하였다. 그 결과 촉매금속의 종류에 따라 센서에서 반응하는 감도가 각각 다르게 선택성을 갖고 있는 것으로 나타났다.

  • PDF

Coupling of W-Doped SnO2 and TiO2 for Efficient Visible-Light Photocatalysis

  • Rawal, Sher Bahadur;Ojha, Devi Prashad;Choi, Young Sik;Lee, Wan In
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.913-918
    • /
    • 2014
  • Five mol % tungsten-doped tin oxide ($W_{0.05}Sn_{0.95}O_2$, TTO5) was prepared by co-precipitation of $SnCl_4{\cdot}5H_2O$ and $WCl_4$, followed by calcination at $1000^{\circ}C$. The as-prepared TTO5 was in the pure cassiterite phase with a particle size of ~50 nm and optical bandgap of 2.51 eV. Herein it was applied for the formation of TTO5/$TiO_2$ heterojunctions by covering the TTO5 surface with $TiO_2$ by sol-gel method. Under visible-light irradiation (${\lambda}{\geq}420$ nm), TTO5/$TiO_2$ showed a significantly high photocatalytic activity in removing gaseous 2-propanol (IP) and evolving $CO_2$. It is deduced that its high visible-light activity is caused by inter-semiconductor holetransfer between the valence band (VB) of TTO5 and $TiO_2$, since the TTO5 nanoparticle (NP) exhibits the absorption edge at ~450 nm and its VB level is located more positive side than that of $TiO_2$. The evidence for the hole-transport mechanism between TTO5 and $TiO_2$ was also investigated by monitoring the holescavenging reaction with 1,4-terephthalic acid (TA).

라디오주파수 분말 스퍼터링 방법으로 성장시킨 주석을 도핑한 산화아연 박막의 열처리 (Annealing of Sn Doped ZnO Thin Films Grown by Radio Frequency Powder Sputtering)

  • 이하람;정병언;양명훈;이종관;최영빈;강현철
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.111-119
    • /
    • 2018
  • We report the post-annealing effect of Sn doped ZnO (ZnO:Sn) thin film grown on sapphire (001) substrate using radio-frequency powder sputtering method. During thermal annealing in a vacuum atmosphere, the ZnO:Sn thin film is transformed into a porous thin film. Based on X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analyses, a possible mechanism for the production of pores is presented. Sn atoms segregate to form clusters that act as catalysts to dissociate Zn-O bonds. The Zn and O atoms subsequently vaporize, leading to the formation of pores in the ZnO:Sn thin film. We also found that Sn clusters were oxidized to form SnO or $SnO_2$ phases.

나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향 (Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor)

  • 홍성제;;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

Sn2O3가 첨가된 ZnO-Pr6O11-CoO계 세라믹스의 바리스터 특성 (Varistor Properties of Sn2O3- Doped ZnO-Pr6O11-CoO-Doped -Based Ceramics)

  • 남춘우
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.39-45
    • /
    • 2003
  • The varistor properties of ZnO-Pr$_{6}$O$_{11}$-CoO-based ceramics doped with Sm$_2$O$_3$were investigated in the addition range of 0.0~2.0 mol% Sm$_2$O$_3$at sintering temperature of 130$0^{\circ}C$ and 135$0^{\circ}C$. As Sm$_2$O$_3$ content is increased, the breakdown voltage was increased in the range of 348.9~521.8 V/mm for ceramics sintered at 130$0^{\circ}C$ and 8.5~381.3 V/mm for ceramics sintered at 135$0^{\circ}C$. On the whole, the increase of sintering temperature led to the low nonlinearity regardless of Sm$_2$O$_3$content. ZnO-Pr$_{6}$O$_{11}$-CoO-based ceramics doped with 1.0 mol% at each sintering temperature exhibited the most superior varistor properties, with the nonlinear exponent of 42.1 at 130$0^{\circ}C$, 36.8 at 135$0^{\circ}C$ and the leakage current of 9.2 $\mu$A at 130$0^{\circ}C$, 11.7 $\mu$A at 135$0^{\circ}C$.EX>.EX>.

$SnO_2$의 가스 감응 특성에 미치는 $SiO_2$의 영향 (Effect of Additive $SnO_2$ on Gas Sensing Properties of $SnO_2$)

  • 최우성;김태원;정승우
    • 한국전기전자재료학회논문지
    • /
    • 제11권4호
    • /
    • pp.288-292
    • /
    • 1998
  • In this paper, we fabricated $SnO_2$ composite ceramics doped with 0~20mol% $SnO_2$ of bulk type to investigate the CO and $H_2$ gas sensitivity in various composition, temperature, and concentration of CO and $H_2$ gas. At the temperature range from $100^{\circ}C\sim425^{\circ}C$, the measured 1000ppm and 250ppm CO gas sensitivities of $SiO_2-SnO_2$composite ceramics were about 1.0~7.6 and 1.0~5.6, respectively. These values were about 1.0~1.5 times larger than pure $SnO_2$. The maximum 1000ppm CO gas sensitivity of $SiO_2-SnO_2$composites were measured around $325^{\circ}C$. At the temperature range from $270^{\circ}C\sim380^{\circ}C$, the 1000ppm and 500ppm $H_2$gas sensitivities of $SiO_2-SnO_2$ composites were about 2.9~21.2 and 2.1~11.3, respectively. Also the maximum 1000, 500 ppm $H_2$ gas sensitivities of samples were measured around.

  • PDF