Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile

아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성

  • Published : 2009.04.30

Abstract

This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

Pt, Pd, In 등의 촉매금속을 사용하여 아세토나이트릴 유독가스에 대한 감도를 향상시키는 SnO2 가스센스에 대하여 연구하였다. Metal-SnO2 후막은 백금전극이 내장된 알루미나 지지체의 스크린법으로 제작되었다. 본 센서의 특성은 검출가스의 농도의 함수로 반응기내 각센서의 전기적 저항을 측정하여 조사하였으며, 10-50ppm 범위의 유독가스 농도에 대하여 검지 측정하였다. 그 결과 촉매금속의 종류에 따라 센서에서 반응하는 감도가 각각 다르게 선택성을 갖고 있는 것으로 나타났다.

Keywords

References

  1. T. C. Marrs, R. L. Maynard and F. R. Sidell, New York, John Wiley & Sons (1996)
  2. M. Tochigi, T. Umekage, T. Otani, T. Kato, A. Iwanami, N. Asukai, T. Sasaki and N. Kato, Neuroscience Research, 44, 267-272 (2002) https://doi.org/10.1016/S0168-0102(02)00146-3
  3. A. Iwanami, O. Toshiyuki, T. Mamoru, K. Tadafumi, , S. Tsukasa and K. Nobumasa, European Psychiatry, 17, 199 (2002)
  4. J. A. F. Comptom, Telford Press Caldwell, N. J. USA (1987)
  5. R. L. Maynard, General & Applied Toxology, Mac-Millan, USA 1123-1153 (1995)
  6. Y. Shimizu, N. Kuwano, T. Hyodo and M. Egashira, Sensors and Actuators, 83, 195-201 (2002) https://doi.org/10.1016/S0925-4005(01)01040-1
  7. D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh and D. D. Lee, Sensors and Actuators, 77, 228-236 (2001) https://doi.org/10.1016/S0925-4005(01)00718-3
  8. P. Gelin, L.Urfels, M.Primet and E.Tena, Catalysis Today, 83, 45-57. (2003) https://doi.org/10.1016/S0920-5861(03)00215-3
  9. S. H. Park, J. Y Ryu, H. H. Choi and T. H. Kwon, Sensors and Actuators 46, 75-79 (1988)
  10. I. Brewster, J. M. Harrison and L. Leadbeater, Xenobiotica, 17, 911-924 (1973) https://doi.org/10.3109/00498258709044190
  11. E.C. Rietveld, L.P.C. Delbressine, T.H.J.M. Waegemaekers and B.F Seutter, Architecture Toxicology, 54, 139-144 (1983) https://doi.org/10.1007/BF01261382
  12. M. A. Guatelli, Methods in Forensic Sciences, New York, Academic Press, 3, 233-265 (1964)
  13. Y. Katsumata, K. Sato and M. Oya, et al. Life science, 27, 1509-1512 (1980) https://doi.org/10.1016/0024-3205(80)90377-X
  14. B. Muir, H. B. Duffy and M. C. J. Moran, Chroma. A., 1083, 183-187 (2004)
  15. NIST chemistry WebBook, (2003)
  16. A. Kawahara, H. Katsuki and M. Egashira, Sensors and Actuators, B, 49 273-278 (1998) https://doi.org/10.1016/S0925-4005(98)00153-1
  17. B. C. Kim, J. Y. Kim, D. D. Lee, J. O. Lim and J. S. Huh, Sensors and Actuators, B, 89, 180-186 (2003) https://doi.org/10.1016/S0925-4005(02)00461-6
  18. J. A. Dean, Lange's HandBook of Chemistry, 12th Edition, McGraw Hill, New York, 10-54 (1979)
  19. C. Xu, J. Kurokawa, N. Miura and N. J. Yamazoe, Mater. Sci. 27, 963-972 (1992) https://doi.org/10.1007/BF01197649