• Title/Summary/Keyword: $SiO_2/Si$ interface

Search Result 593, Processing Time 0.057 seconds

A Study on Improvement of Electric Breakdown Properties due to Interface Treatment Effect of Epoxy/SiO$_2$ Composite Materials (Epoxy/SiO$_2$복합재료의 계면 처리 효과에 따른 절연 파괴 특성 개선에 관한 연구)

  • 김명호;박창옥;박재준;김경환;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.102-104
    • /
    • 1990
  • In this paper, we studied and investigated as to temperature dependence of dielectric breakdown properties, and the dielectric breakdown properties, and deterioration-proof properties due to interface treatment effect. In the result, we knew that temperature dependence of dielectric breakdown strength due to filler content was decreased, identified that D.C. dielectric breakdown strength was improved at the filler content 50[%]. When the D.C. voltage was applied to the non silane and silane treated specimens deal with mechanical deterioration, the dielectric breakdown strength was improved at the 150[%].

Effect of Sulfur on the High-temperature Oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si Alloys (Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si 합금의 고온 산화에 미치는 S의 영향)

  • Lee, Dong Bok;Lee, Kyong-Hwan;Bae, Geun Soo;Cho, Gyu Chul;Jung, Jae Ok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.386-391
    • /
    • 2017
  • Two kinds of steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at $900^{\circ}C$ for 50-350 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of $Cr_2O_3$ as the major oxide and $Cr_2MnO_4$ as the minor one through preferential oxidation of Cr and Mn. They additionally formed $SiO_2$ particles around the scale/alloy interface as well as inside the matrices. The high affinity of Mn with S led to the formation of scattered MnS inclusions particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance, because it deteriorated the scale/alloy adherence so as to accerelate the adherence and compactness of the formed scales.

Process Temperature Dependence of Al2O3 Film Deposited by Thermal ALD as a Passivation Layer for c-Si Solar Cells

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • This paper presents a study of the process temperature dependence of $Al_2O_3$ film grown by thermal atomic layer deposition (ALD) as a passivation layer in the crystalline Si (c-Si) solar cells. The deposition rate of $Al_2O_3$ film maintained almost the same until $250^{\circ}C$, but decreased from $300^{\circ}C$. $Al_2O_3$ film deposited at $250^{\circ}C$ was found to have the highest negative fixed oxide charge density ($Q_f$) due to its O-rich condition and low hydroxyl group (-OH) density. After post-metallization annealing (PMA), $Al_2O_3$ film deposited at $250^{\circ}C$ had the lowest slow and fast interface trap density. Actually, $Al_2O_3$ film deposited at $250^{\circ}C$ showed the best passivation effects, that is, the highest excess carrier lifetime (${\tau}_{PCD}$) and lowest surface recombination velocity ($S_{eff}$) than other conditions. Therefore, $Al_2O_3$ film deposited at $250^{\circ}C$ exhibited excellent chemical and field-effect passivation properties for p-type c-Si solar cells.

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Su;Hwang, Han-Uk;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

A New Annealing Method. (새로운 Annealing 방법)

  • Hong, Soon-Kwan;Park, Sun-Woo;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.367-369
    • /
    • 1988
  • We suggest a new annealing method for stabilization of $Si-SiO_2$ interface state in MOS device using $NH_3$(10%) + $N_2$(90%) ambient gases. The annealing effect was examined through C-V characteristics, threshold voltage, effective mobility on channel, respectively. The experimental result show that the new method is available to improvement of MOS device characteristics.

  • PDF

Environmental Conditions of Sediment and Bottom Waters near Sediment in the Downstream of the Nagdong River (낙동강 하류 수계에서 저층수 및 저질퇴적층의 환경)

  • Jung, Ha-Young;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.311-321
    • /
    • 2003
  • We surveyed physico-chemical properties of bottom water and sediment to evaluate the influence of sediment on the eutrophication in the downstream of Nagdong River from 1998 to 2000. From May to August, DO concentration of bottom waters dropped below 5 mg $O_2/l$ and $NH_4\;^+$ and $PO_4\;^{3-}$ concentrations significantly increased in the bottom waters, resulting in the great differences between surface and bottom waters. Fluxes across water-sediment interface would be substantially active in this period. The serial orders of the water fertility or eutrophication were Joman River > Sonagdong River > Nagdong River. The organic nutrient contents of sediment increased toward the lower parts of the river system. Organic contents of the sediment would be under the influence of water pollution and exhibited a negative correlation with sediment bulk-density or particle size. The concentrations of exchangeable inorganic nutrients of sediment were greater than those of pore waters, and $PO_4\;^{3-}$, $NH_4\;^+$ and $SiO_2$ increased along the sediment depth. $PO_4\;^{3-}$ and $NO_3\;^-$ concentrations of the pore water were less than the overlying waters, while NH4+ and $SiO_2$ concentrations showed opposite trends. Exchangeable nutrients of sediment could be the repository for t]me nutrient exchange in the water-sediment interface.

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF