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Abstract—This paper presents a study of the process 

temperature dependence of Al2O3 film grown by 

thermal atomic layer deposition (ALD) as a 

passivation layer in the crystalline Si (c-Si) solar cells. 

The deposition rate of Al2O3 film maintained almost 

the same until 250 
o
C, but decreased from 300 

o
C. 

Al2O3 film deposited at 250 
o
C was found to have the 

highest negative fixed oxide charge density (Qf) due to 

its O-rich condition and low hydroxyl group (-OH) 

density. After post-metallization annealing (PMA), 

Al2O3 film deposited at 250 
o
C had the lowest slow 

and fast interface trap density. Actually, Al2O3 film 

deposited at 250 
o
C showed the best passivation 

effects, that is, the highest excess carrier lifetime 

(τPCD) and lowest surface recombination velocity (Seff) 

than other conditions. Therefore, Al2O3 film deposited 

at 250 
o
C exhibited excellent chemical and field-effect 

passivation properties for p-type c-Si solar cells.    

 

Index Terms—Solar cell, Al2O3, passivation layer, 

thermal ALD, negative fixed oxide charge   

I. INTRODUCTION 

For high efficient c-Si solar cells, minimizing 

electrical losses at the surface of the Si has become 

important because of the trend toward thinner c-Si wafers 

used as base material [1, 2]. To reduce electrical losses at 

the surface of Si, two passivation methods can be used 

[2-4]. The first method is to reduce the defect states at 

the surface of the Si (i.e., chemical passivation). Because 

the recombination rate is proportional to the interface 

defect density, electrical losses can be mitigated by 

passivating the Si dangling bonds. The second one is to 

reduce the minority carrier concentration near the surface 

by a built-in electric field (i.e., field-effect passivation). 

Because recombination process needs both electrons and 

holes, the recombination rate can be decreased by 

reducing the minority carriers near the surface.  

For the passivation layer of the p-type c-Si solar cell, 

many kinds of materials such as SiO2, a-Si, a-SiNx, and 

a-SiCx had been used [1, 2]. Recently, Al2O3 film grown 

by ALD has attracted strong interest as a passivation 

layer on p-type c-Si. Due to its high level of negative 

fixed oxide charge density, Qf, it can reduce electron 

concentration near the surface of p-type Si wafer by a 

built-in electric field. Hence, Al2O3 film can suppress the 

electrical loss by accomplishing both chemical and field-

effect passivation on p-type c-Si surfaces [1-4]. However, 

few studies have addressed the dependence of the 

passivation characteristics on the process temperature of 

Al2O3 film grown by thermal ALD.  

In this work, the dependence of passivation 

characteristics of thermal ALD Al2O3 film on the 

deposition temperature was investigated in depth for c-Si 

solar cell. 

II. EXPERIMENTAL 

The experimental process flow for this work is 

summarized in Fig. 1. A p-type Si substrate was treated 
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with RCA cleaning. Al2O3 film (10 nm) was deposited by 

thermal ALD considering the deposition rate. Ti film 

(100 nm) was deposited as a top electrode on the Al2O3 

film by RF magnetron sputtering. After patterning the top 

metal by photolithography and wet etching, Al film (100 

nm) was deposited on the backside of the substrate by RF 

magnetron sputtering. Finally, post-metallization 

annealing (PMA) was carried out in a furnace with a 

forming gas ambient at 400 oC for 30 min. 

Thickness of Al2O3 film was confirmed by ellip- 

sometry measurement. High frequency capacitance (CHF) 

and quasi-static capacitance (CQS) were measured using 

an Agilent 4284A precision LCR meter and an Agilent 

4156C semiconductor parameter analyzer, respectively. 

Al2O3 film deposited at different process temperatures 

was analyzed by X-ray photoelectron spectroscopy 

(XPS). The depth profile of Al2O3 film before and after 

PMA was investigated by secondary ion mass 

spectrometry (SIMS). To confirm the passivation 

properties of Al2O3 film deposited at different 

temperature conditions, Quasi-Steady-State Photoconduc- 

tance (QSSPC) measurement was carried out. 

III. RESULTS AND DISCUSSIONS 

As shown Fig. 2, the deposition rate of Al2O3 film was 

about 0.14 nm/cycle at the process temperature from 200 oC 

to 250 oC. But it began to decrease from 300 oC condition. 

Due to the process temperature dependence of deposition 

rate of Al2O3 film, the low process temperature (200 ~ 

250oC) is more suitable than the high process 

temperature (300 ~ 350 oC) in terms of process efficiency 

of c-Si solar cell. 

Fig. 3(a) shows the capacitance-voltage (C-V) 

P-type Si wafer

RCA Cleaning
- H2SO4:H2O2 (4:1), 90 

o
C, 15 min 

→ HF:H2O (1:100), 30 sec 

→ NH4OH:H2O2:H2O (1:1:10), 70 
o
C, 10min

Al2O3 Dep. (Thermal ALD / 10nm)
- Process temperature 200 oC, 250 oC, 300 oC, 350 oC

Ti Dep. (RF Sputter / 100 nm / Top metal)

Al Dep. (RF Sputter / 100 nm / Back metal)

Top metal patterning
- Photo lithography

→ Wet etching – HF:H2O (1:100), 1min 30 sec

→ PR remove – Acetone & Ultra sonic, 1 min

Post metallization annealing [PMA]
- Forming gas (H2 4%, N2 96%), 400 

oC, 30 min

 

Fig. 1. Process flow for the experiments. 
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Fig. 2. Deposition rate of Al2O3 film as a function of process 

temperature. 
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Fig. 3. (a) C-V characteristics of an Al2O3 MIS capacitor, (b) 

Fixed oxide charge density, Qf of an Al2O3 MIS capacitor as a 

function of process temperature before and after PMA. 
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characteristics of an Al2O3 MIS capacitor at 100 kHz. 

The flatband voltage (VFB) moved toward the positive 

bias up to 250 oC, but then shifted toward the negative 

bias from 300 oC before PMA. After PMA, the VFB of all 

process temperatures shifted abruptly toward the positive 

bias and appeared to have the same values regardless of 

process temperature. Fig. 3(b) shows Qf as a function of 

process temperature. To extract Qf, a reference VFB, that 

is, -1.45 V (before PMA) or -0.53 V (after PMA) 

calculated from the dependence of VFB on Al2O3 

thickness was used. Before PMA, Qf becomes negative 

only at 200~250 oC, with the highest negative Qf at 250 
oC condition. After PMA, however, Qf of Al2O3 film was 

negative for all temperature conditions and it became the 

greatest at 250 oC condition. 

Figs. 4(a) and (b) show the hysteresis characteristics of 

MIS capacitors before and after PMA. Slow interface 

trap density (Nsi) was extracted from △VFB in Fig. 4(c). 

Before PMA, Nsi decreased as the process temperature 

increased. After PMA, however, Nsi decreased for all 

temperatures with the lowest Nsi at 250 oC condition. 

To confirm the trend of fast interface trap density (Dit) 

through the process temperatures, quasi-static 

capacitance voltage (QSCV) measurement was 

performed for the Al2O3 MIS capacitor with PMA. From 

the QSCV curve, the surface potential as a function of 

voltage was extracted by Berglund’s integral [5] and Dit 

was calculated with CHF and CQS from equation (1) [5]: 

 

 

− −
−    

= − −   
  

1 1

QS HF QS HF
it
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C C C C
D 1 1
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To investigate Dit as a function of surface potential, Dit 

was plotted as a function of E-Ev as shown in Fig. 5(a). 

The lowest Dit distribution was shown at 250 oC and the 

same Dit distribution was seen at other process 

temperatures. In Fig. 5(b), the lowest midgap Dit was 

seen at 250 oC condition. 

The origin of the negative Qf at 200~250 oC before 

PMA was identified by XPS analysis. Fig. 6 shows the 

atomic percentage of the Al2p and O1s peaks of the 

Al2O3 film. In amorphous Al2O3, Al vacancies and O 

interstitials form oxygen dangling bonds (O DBs), which 

contribute to negative Qf [6, 7]. In Fig. 6, Al2O3 films 

grown at 200~250oC with a negative Qf have a higher 

percentage of O1s and less of Al2p than films deposited 

at other temperatures. That is, the negative Qf at 200~250 oC 

might result from Al vacancies or O interstitials. 

Figs. 7(a) and (b) show the O1s peaks at 200~250 oC 

before PMA, and Fig. 7(c) is the -OH peak (532.6 eV) 

[9] in the O1s peaks for the 200~250oC conditions before 

PMA. The –OH peak at 250oC is lower than that at 

200oC. O-H bonds occur in the neutral charge state [6], 
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Fig. 4. The hysteresis of an Al2O3 MIS capacitor (a) before, (b) 

after PMA, (c) Slow interface trap density, Nsi of Al2O3 MIS 

capacitor as a function of process temperature. 
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and the decrease of the –OH peak indicates the relative 

increase of O DBs. This, therefore, can explain why the 

negative Qf at 250 oC is greater than that at 200 oC. 

Fig. 8 shows SIMS profile of the Al2O3 film deposited 

at 250 oC before and after forming gas annealing (FGA). 

H ions in the Al2O3 film diffuse to the interface between 

Al2O3 and Si after annealing, where the H+ ions passivate 

Nsi by mitigating the dangling bonds at the interface of 

Al2O3 and Si substrate [7, 8]. O ions near the interface 

increase, and O DBs might also increase after annealing. 

This could explain why the negative Qf increases after 

PMA [6, 7]. 

Fig. 9 exhibits the QSSPC measurement results. 

Surface recombination velocity, Seff was extracted from 

equation (2) with excess carrier lifetime, τPCD which is 

the result of QSSPC measurement [10, 11]. 
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Fig. 5. (a) Fast interface trap density, Dit as a function of 

surface potential after PMA, (b) fast interface trap density Dit at 

midgap as a function of process temperature after PMA. 

 

200 250 300 350
0

10

20

30

40

50

60

70
 

A
to
m
ic
 p
er
ce
n
ta
g
e 
[%
]

Process temperature [oC]

  Al2p

  O1s

 

Fig. 6. The atomic percentage of Al2p and O1s peak of as 

grown Al2O3 film. 
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Fig. 7. Analysis of O1s of as grown Al2O3 film (a) at 200 oC, 

(b) at 250 oC, (c) Comparison of hydroxyl group peak at 200 oC 

and 250 oC.  
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W is the effective wafer thickness and τb is the bulk 

minority carrier lifetime which is usually assumed to be 

infinite as the best case. 

The highest τPCD and lowest Seff happened at 250 oC 

condition. At the high process temperature condition (300 

~ 350 oC), however, τPCD and Seff became worse than the 

case without Al2O3 passivation layer. Because τPCD and Seff 

of Si wafer is closely related with passivation properties of 

Al2O3 film, it can be said that Al2O3 film deposited at 250 oC 

condition has the best passivation effects, that is, possibly 

the highest efficiency of c-Si solar cell, due to the 

outstanding chemical and field-effect passivation 

properties caused by its higher negative Qf, lower Nsi, and 

lower Dit than those at other conditions. 

V. CONCLUSIONS 

The process temperature dependence of Al2O3 film 

grown by thermal ALD as a passivation layer in c-Si 

solar cells was studied. Due to abrupt decrease of the 

deposition rate of Al2O3 film over 300 oC, the low 

process temperature is more suitable in terms of process 

efficiency. Because Al2O3 film exhibited the highest 

negative Qf at 250 oC, it is likely to have outstanding 

field-effect passivation properties in p-type c-Si at that 

temperature. XPS analysis showed that Al2O3 film at 250 
oC before PMA has an O-rich condition and low –OH 

group density, that is, it had the highest negative Qf due 

to great oxygen dangling bonds. At a deposition 

temperature of 250 oC, Al2O3 film also had not only the 

lowest Nsi but also the lowest Dit after PMA which 

suggest that Al2O3 film deposited at 250 oC will be an 

excellent chemical passivation layer. From the SIMS 

profile, FGA made H+ ions passivate the dangling bonds 

at the interface between Al2O3 and Si substrate. Because 

FGA also makes Al2O3 near the interface more O-rich, 

the negative Qf increases by FGA. The highest τPCD and 

lowest Seff were appeared at the 250 oC condition likely 

due to its higher negative Qf, lower Nsi, and lower Dit 

than those at other conditions. But τPCD and Seff are 

deteriorated from 300 oC. These trends of τPCD and Seff 

can be explained by the transition of negative Qf and 

interface trap density as chemical and field-effect 

passivation mechanisms. Therefore, it can be said that 

Al2O3 film deposited at 250 oC demonstrates outstanding 

promise as a passivation layer due to the concurrent 

chemical and field-effect passivation effect. 
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