• Title/Summary/Keyword: $PPAR_{\gamma}$

Search Result 474, Processing Time 0.028 seconds

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Antioxidant Effect of Hot water and Ethanol extracts from Cheonnyuncho (Opuntia humifusa) on Reactive Oxygen Species (ROS) Production in 3T3-L1 Adipocytes (3T3-L1 지방세포내 ROS 생성에 대한 천년초 열수 및 에탄올 추출물의 항산화 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Kim, Sun-Gu;Jang, Jung-Young;Lee, Hyo-Ku;Rhee, Seong-Kap;Hong, Hee-Do;Choi, Hyeon-Son;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.443-450
    • /
    • 2012
  • Recently, NADPH oxidase 4 (NOX4)-mediated generation of intracellular reactive oxygen species (ROS) was proposed to accelerate adipogenesis of 3T3-L1 cell. We have previously shown that Cheonnyuncho (Opuntia humifusa) extract significantly inhibited adipocyte differentiation via downregulation of $PPAR{\gamma}$ (peroxisome proliferator-activated receptor gamma) gene expression. In this study, we focused on the molecular mechanism(s) of NOX4, G6PDH (glucose-6-phosphate dehydrogenase) and antioxidant enzymes in anti-oxidative activities of 3T3-L1 adipocytes. Our results indicate that Cheonnyuncho extracts markedly inhibits ROS production during adipogenesis in 3T3-L1 cells. Cheonnyuncho extracts suppressed the mRNA expression of the pro-oxidant enzyme such as NOX4 and the NADPH-producing G6PDH enzyme. In addition, treatment with Cheonnyuncho extract was found to upregulate mRNA levels of antioxidant enzymes such as Mn-SOD (manganese-superoxide dismutase), Cu/Zn-SOD (copper/zinc-SOD), glutathione peroxidase (GPx), glutathion reductase (GR), and catalase, all of which are important for endogenous antioxidant responses. These data suggest that Cheonnyuncho extract may be effective in preventing the rise of oxidative stress during adipocyte differentiation through mechanism(s) that involves direct down regulation of NOX4 and G6PDH gene expression or via upregulation of endogenous antioxidant responses.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

Overexpression of cholinergic receptor nicotinic gamma subunit inhibits proliferation and differentiation of bovine preadipocytes

  • Jiawei, Du;Hui, Zhao;Guibing, Song;Yuan, Pang;Lei, Jiang;Linsen, Zan;Hongbao, Wang
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.200-208
    • /
    • 2023
  • Objective: Muscle acetylcholine receptors have five alpha subunits (α, β, δ, ε, or γ), and cholinergic receptor nicotinic gamma subunit (CHRNG) is the γ subunit. It may also play an essential role in biological processes, including cell differentiation, growth, and survival, while the role of CHRNG has not been studied in the literature. Therefore, the purpose of this study is to clarify the effect of CHRNG on the proliferation and differentiation of bovine preadipocytes. Methods: We constructed a CHRNG overexpression adenovirus vector and successfully overexpressed it on bovine preadipocytes. The effects of CHRNG on bovine preadipocyte proliferation were detected by Edu assay, cell counting Kit-8 (CCK-8), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Western blot and other techniques. We also performed oil red O, RT-qPCR, Western blot to explore its effect on the differentiation of preadipocytes. Results: The results of Edu proliferation experiments showed that the number of EDU-positive cells in the overexpression group was significantly less. CCK-8 experiments found that the optical density values of the cells in the overexpression group were lower than those of the control group, the mRNA levels of proliferating cell nuclear antigen (PCNA), cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin D2 (CCND2) decreased significantly after CHRNG gene overexpression, the mRNA levels of cyclin dependent kinase inhibitor 1A (CDKN1A) increased significantly, and the protein levels of PCNA, CCNB1, CCND2 decreased significantly. Overexpression of CHRNG inhibited the differentiation of bovine preadipocytes. The results of oil red O and triglyceride determination showed that the size and speed of lipid droplets accumulation in the overexpression group were significantly lower. The mRNA and protein levels of peroxisome proliferator activated receptor gamma (PPAR class="checkNonKBPoint">γ), CCAAT enhancer binding protein alpha (CEBPα), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN) decreased significantly. Conclusion: Overexpression of CHRNG in bovine preadipocytes inhibits the proliferation and differentiation of bovine preadipocytes.

Effect of Korean Red Ginseng on Hypertriglyceridemia in High Fat/high Cholesterol Diet Rat Model (고지방/고콜레스테롤 식이 랫트 모델에서 홍삼에 의한 고중성지방혈증 개선 효과)

  • Kim, Hye Yoom;Jin, Xian Jun;Hong, Mi Hyeon;Ko, Seon Mi;Hwang, Seung Mi;Im, Dong joong;Ahn, You Mee;Lee, Ho Sub;Kang, Dae Gill;Lee, Yun Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.43-50
    • /
    • 2018
  • Korean Red Ginseng (RG) are used as a traditional treatment for improve blood circulation. This experimental study was designed to investigate the inhibitory effects of Korean red ginseng on lipid metabolism in high fat/cholesterol diet (HFCD)-induced hypertriglyceridemia. Sprague Dawley rats were fed the HFCD diet with/without fluvastatin (Flu, positive control) 3 mg/kg/day, and RG 125 or 250 mg/kg/day, respectively. All groups received regular diet or HFCD diet, respectively, for 13 weeks. The last three groups treatment of Flu and RG 125, and RG 250 orally for a period of 9 weeks. Group 1, reular diet; group 2, HFCD diet; group 3, Flu + HFCD diet; group 4, RG 125 + HFCD diet; group 5, RG 250 + HFCD diet. As a result, treatment with low or high doses of RG markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. RG and Flu also led to an increase in lipoprotein lipase activity in the HFCD group. On the other hand, RG and Flu led to an decrease in fatty acid synthase and free fatty acid activity in the HFCD group. Treatment with RG suppressed increased expressions of $PPAR-{\alpha}$ and AMPK in HFCD rat liver or muscle. In addition, the RG attenuated triglyceridemia by inhibition of $PPAR-{\gamma}$ and FABP protein expression levels and LXR and SREBP-1 gene expression in liver or muscle. The RG significantly prevented the development of the metabolic disturbances such as hypertriglyceridemia and hyperlipidemia. Taken together, the administration of RG improves hypertriglyceridemia through the alteration in suppression of triglyceride synthesis and accentuated of triglyceride decomposition. These results suggested that RG is useful in the prevention or treatment of hypertriglyceridemia.

Korean solar salts reduce obesity and alter its related markers in diet-induced obese mice

  • Ju, Jaehyun;Song, Jia-Le;Park, Eui-Seong;Do, Myoung-Sool;Park, Kun-Young
    • Nutrition Research and Practice
    • /
    • v.10 no.6
    • /
    • pp.629-634
    • /
    • 2016
  • BACKGROUND/OBJECTIVE: The aim of this experiments was to show anti-obesity effects of Korean solar salt from different salt fields in diet-induced obese mice. MATERIALS/METHODS: Diet-induced obesity (DIO) was induced by a high-fat diet (HFD; 45% cal from fat) in C57BL/6J mice for eight weeks. The mice were fed with the designated diets (chow diet for Normal, HFD for Control, 0.47%-salt-mixed HFD for purified salt (PS), Guerande solar salt from France (SS-G), solar salt from Y salt field (SS-Y), solar salts from T salt field (SS-T) and S salt field (SS-S)) for another eight weeks. We checked body weight, food efficiency ratio (FER) and tissue weights (liver and epididymal adipose tissue (EAT)), and observed serum concentrations of triacylglycerol (TG), total cholesterol (TC), leptin and insulin. We also evaluated gene expressions of adipogenic / lipogenic mRNAs of $C/EBP{\alpha}$, $PPAR{\gamma}$ and FAS and beta-oxidation-related factors ($PPAR{\alpha}$ and CPT-1) in liver and EAT. The mineral composition of salt samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS: SS-T and SS-S significantly reduced body weight gain, FER, and weight of EAT compared to control and other samples (P < 0.05). SS-T and SS-S also significantly decreased serum levels of TG, TC, leptin and insulin (P < 0.05). SS-T and SS-S suppressed expressions of adipogenic / lipogenic mRNAs in liver and EAT, while promoting expression of beta-oxidation-related factors. The lowest sodium concentration was observed in SS-T ($30.30{\pm}0.59%$), and the lowest sodium-to-potassium (Na/K) ratio was found in SS-S (17.81). CONCLUSIONS: Our study shows that well-processed Korean solar salt may have anti-obesity effects in vivo, probably owing to its differences in mineral composition and other components, presumably resulting from the manufacturing processes. Further research is needed into the mechanism and to explore optimal manufacturing processes.

Effects of CJB Water Extract on Obesity-Related Factors in Hypothalamus of Rats Fed High-Fat Diet (고지방식이 유도 비만 흰쥐의 뇌 시상하부 비만 관련 인자에 대한 차전자와 복령의 복합 물추출물의 효과)

  • Hwang, Jeong-Soo;Suk, Jang-Mi;Choi, Hye-Min;Shin, In-Soon;Hwang, Su-Jung;Park, Ji-Young;Kim, Sung-Ok;Seo, Bu-Il;Kim, Mi-Ryeo
    • The Korea Journal of Herbology
    • /
    • v.27 no.5
    • /
    • pp.99-107
    • /
    • 2012
  • Objectives : This study was conducted to investigate the anti-obesity effects of mixed water extract of Plantaginis Semen & Poria (CJB) on obese rats induced with high fat diet. Method: Male Sprague-Dawley rats were divided into three groups; Normal group, high-fat (HF) group, HF+CJB(100 mg/kg, P.O.) for 8 weeks. The body weight, food intake and weights of adipose tissues were measured, respectively. Lipid profiles in serum were analyzed by automatic analyzer of blood. Obese marker proteins and the changes of NPY and LR immunoreactivities in hypothalamus were analyzed by Western blot and immunohistochemistry. Results : CJB significantly reduced body weight, food intake, adipose tissue weights compared to HF group. Serum triglyceride and total cholesterol were significantly higher in HF group than in Normal group however, CJB significantly lowered those of HF group. HDL-cholesterol level in CJB groups was elevated compared to HF group. The pAMPK in hypothalamus were decreased in that of HF group and that of CJB group decreased. Inversely, ACC was increased in HF group and that of CJB groups decrease. Expression of $PPAR{\gamma}$ in hypothalamus was increased by CJB treatment. However, $PPAR{\alpha}$ levels in CJB group were decreased compared to HF group. The expressions of NPY and LR in PVN and ARC of hypothalamus were decreased in CJB group, respectively. Conclusion : Administration of CJB can play anti-obesity through regulations of NPY and LR activities and obesity marker proteins in obese rat's hypothalamus.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

ISOLATION OF PORCINE MULTIPOTENTIAL SKIN-DERIVED PRECURSOR CELLS AND ITS MULTILINEAGE DIFFERENTIATION (미니돼지에서 다능성 피부유래 전구세포의 추출과 이의 다배엽 세포로의 분화유도에 대한 연구)

  • Choi, Moon-Jeong;Byun, June-Ho;Kang, Eun-Ju;Rho, Gyu-Jin;Kim, Uk-Kyu;Kim, Jong-Ryoul;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.6
    • /
    • pp.588-593
    • /
    • 2008
  • There are increasing reports regarding regeneration of the defected tissues using tissue engineering technique. In this technique, multipotential stem cells are essential. There are many potential sources of adult stem cells, such as bone marrow, umbilical cord blood, fat, muscle, dental tissues and skin. Among them, skin is highly accessible and easily obtained with a minimum of donor site complications. Moreover, skin is an abundant adult stem cell sources and has the potential for self-replication and immune privilege. In this study, we isolated skin-derived precursor cells (SKPs) from the ear of adult miniature pigs. In these SKPs, the expression of transcriptional factors, Oct-4, Sox-2, and Nanog were detected by RT-PCR. In vitro osteogenesis and adipogenesis were observed at 3 weeks after transdifferentiations as assayed by positive von Kossa and Oil-red O staining, respectively. In addition, expression of osteocalcin and osteonectin in the osteogenic differentiation medium and $PPAR{\gamma}2$ and aP2 in the adipogenic differentiation medium were detected by RT-PCR. In vitro neurogenesis of porcine SKPs was observed during 24 and 72 hours after treatment of neurogenic differentiation medium. The results of this study suggest that SKPs demonstrate the properties of pluripotence or multipotence and multi-lineage differentiation. This indicates that autogenous SKPs are a reliable and useful source of adult stem cells for regenerative medicine.

The Inhibitory Effect of L. plantarum Q180 on Adipocyte Differentiation in 3T3-L1 and Reduction of Adipocyte Size in Mice Fed High-fat Diet

  • Park, Sun-Young;Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.99-109
    • /
    • 2018
  • In this study, we examined the inhibitory effect of L. plantarum Q180 on adipocyte differentiation in 3T3-L1 and reduction of adipocyte size in mice fed high-fat diet. L. plantarum Q180 inhibited the adipocyte differentiation of 3T3-L1 cells ($18.47{\pm}0.32%$) at a concentration of $400{\mu}g/mL$ ($10^8CFU/g$). As a result of western blot analysis, the expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ in 3T3-L1 adipocyte treated with $400{\mu}g/mL$ of L. plantarum Q180 decreased 35.16% and 40.07%, respectively, compared with the control. To examine the effects, mice were fed three different diets as follows: ND (n=6) was fed ND and orally administered saline solution; HFD (n=6), HFD and orally administered saline solution; and HFD+Q180 (n=6), HFD and orally administered L. plantarum Q180. After six weeks, the rate of increase of body weight was 13.7% lower in the HFD+Q180 group compared to the HFD group. In addition, the epididymal fat weights of the HFD+Q180 group were lower than that of the HFD group. The change of adipocyte size was measured in diet-induced obese mice. Consequently, the number of large-size adipose tissue was less distributed in the ND and HFD+Q180 groups than in the HFD group. L. plantarum Q180 has an effect on the inhibition of 3T3-L1 adipocyte differentiation, fat absorption and reduction of adipocyte size. L. plantarum Q180 could be applied to functional food products that help improve obesity.