• Title/Summary/Keyword: $PGE_{2}$

Search Result 1,088, Processing Time 0.023 seconds

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Effects of Keonbodan (健步丹) on MIA-Induced Osteoarthritis in Rat (건보단(健步丹)이 MIA로 유도된 골관절염 Rat에 미치는 영향)

  • Lee, Eun-Jung;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.2
    • /
    • pp.51-64
    • /
    • 2014
  • Objectives This study was carried out to know the effects of Keonbodan (hereinafter referred to KBD) in osteoarthritis induced by Monosodium iodoacetate(hereinafter referred to MIA) on Wistar rat. Methods Osteoarthritis was induced by injection of MIA into left knee joint cavities of rat. Osteoarthritis rats were divided into 4 groups (normal (n=6), control (n=6), indomethacin (n=6), KBD (n=6) group). The control group was administered normal saline and indomethacin group was administered indomethacin (2 mg/kg). And the KBD group was administered KBD (142 mg/kg). Each groups were administered by orally for 4 weeks. This experiment were carried out in vivo. In vivo, at the end of the experiment (5 weeks after MIA injection), effects on hepatotoxicity and nephrotoxicity, cytokines in serum, arachidonic acid, osteocalcin, MMP-9, TIMP-1 and cartilage volume were evaluated. And histopathological examinations on the articular structures of knee joints were performed. Results 1. In weight-bearing measurement, level of weight was increased. 2. In order to hepatotoxicity and nephrotoxicity, ALT, AST, BUN and creatinine were tested. And there were no significant changes. 3. In serum, levels of TNF-$\alpha$, IL-$1{\beta}$ were significantly decreased. IL-6 was insignificantly decreased. 4. In serum, level of MMP-9 and TIMP-1 was decreased. 5. In serum, level of $LTB_4$, $PGE_2$ and osteocalcin was decreased. 6. In ${\mu}$CT-arthrography, the cartilage volume was greater than that of the control group. 7. The joint damage induced by osteoarthritis was lesser than the control group in histopathologic observation (H&E, Safranin-O staining). Conclusions These results demonstrated that KBD suppressed the osteoarthritis- inducing effects of MIA in rat. And further studies are required to find out more effective substance and anti-osteoarthritic mechanism in the future.

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon;Kim, Kyoung-Hwa;Kwag, Eun-Hye;Seol, Yang Jo;Lee, Yong Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.70-83
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.

The Effects of Yeouigeumhwang-san on Anti-Inflammation and Anti- Propionibacterium acnes (여의금황산(如意金黃散)이 여드름 유발균과 염증에 미치는 영향)

  • Yoo, Jin-Gon;Seo, Hyeong-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.77-88
    • /
    • 2007
  • Objectives : This experimental study was performed to investigate the effects of Yeouigeumhwang-san(YUGHS) on anti-inflammation and anti-Propionibacterium acnes. Methods : The cytotoxicity of YUGHS about viability of Raw 264.7 cell was tested by using a colorimetric tetrazolium assay(MTT assay). To investigate the anti-inflammatory effets of YUGHS on LPS-induced macrophage Raw 264.7 cell, we used ELISA kit and Western blots. Inhibitory effects of YUGHS on Propionibactrium acnes were investigated by using paper disk diffusion method. Results : 1. YUGHS has no cytotoxicity under 50 ${\mu}g/ml$ concentration but over 50 ${\mu}g/ml$ has a little cytotoxicity in Raw 264.7 cell. 2. Concentration of 100 ${\mu}g/ml$ YUGHS inhibited the production of NO in the Raw 264.7 cell stimulated with LPS. 3. All concentrations of YUGHS did not inhibit the production of $TNF-{\alpha}$ in the Raw 264.7 cell stimulated with LPS. 4. All concentrations of YUGHS significantly inhibited the production of $PGE_2$ in the Raw 264.7 cell stimulated with LPS. 5. YUGHS did not inhibit the expression of COX-2 but concentration of 50 ${\mu}g/ml$ YUGHS inhibited iNOS expression in the Raw 264.7 cell stimulated with LPS. 6. YUGHS has the effect of blocking $NF-{\kappa}B$ into nucleus in LPS-induced macrophage Raw 264.7 cell 7. YUGHS did not have the inhibitory effect of Propionibactrium acnes. Conclusions : These results indicate that Yeouigeumhwang-san has anti-inflammatory effets. If further study is performed, the use of Yeouigeumhwang-san will be valuable and benificial in the therapy of acnes.

  • PDF

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

Effect of Hwangyeonhaedok-tang on Experimental Mouse Colitis Induced by Dextran Sulfate Sodium (황련해독탕(黃連解毒湯)이 Dextran Sulfate Sodium 유도 마우스 대장염에 미치는 영향)

  • Lim, Dae-Hwan;Yun, Ji-Yeon;Jang, Seon-Il;Yun, Young-Gab
    • Herbal Formula Science
    • /
    • v.19 no.2
    • /
    • pp.11-22
    • /
    • 2011
  • Objectives : Hwangyeonhaedok-tang(HHDT) has been traditionally used for various clinical symptoms associated with gastrointestinal disorder, cardiovascular diseases, and inflammation in the Oriental medicine. However, little is known for antioxidant and anti-inflammatory effects of HHDT on dextran-sulfate sodium(DSS)-induced colitis in mice. Methods : In this study, we investigated an antioxidant and anti-inflammatory effects of HHDT on DSS-induced colitis in mice. An experimental colitis was induced by daily treatment with 5% DSS. HHDT was orally administrated the various concentrations(25-100 mg/kg, body weight/day) for 7 days with one time per day. Results : HHDT reduced significantly clinical sign of DSS-induced colitis, including body weight loss, shorten colon length, disease activity index(DAI), and histological colon injury. HHDT also inhibited significantly serum NO and prostaglandine $E_2(PGE_2)$ productions in DSS-induced colitis mice. Furthermore, HDDT increased significantly an superoxide anion(SOD), catalase, and glutathione peroxidase(GPx) activity of the colon tissue in DSS-induced colitis mice. Conclusions : These results suggest that HHDT administration could reduce significantly the clinical signs and inflammatory mediators, and increase antioxidant activity in DSS-induced colitis model mice and is a good candidate for further evaluation as an effective anti-ulcerative agent.

Effects of Kangwhal-Sokdantang Extract on Osteoblast Function (강활속단탕(羌活續斷湯)이 골세포(骨細胞) 기능(機能)에 미치는 영향(影響))

  • Lee Taek-Jun;Hong Ji-Woo;Choi Hyun-Ju;Gil In-Ho;Jeong Sun-Chung;Hwang Gui-Seo;Lee Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.8 no.2
    • /
    • pp.13-30
    • /
    • 2004
  • This study was performed to evaluate the effect of Kangwhal-Sokdan tang(KS) on osteoblast function and gene expression. The osteoblast separated from the murine calvariae and MG-63 cell were cultivated to evaluate the cell function and gene expression. The results were summarized as followes. 1) KS increased cell proliferation of murine calvarial cell. 2) KS increased protein synthesis, collagen synthesis and ALP activity of murine calvarial cell. 3) KS increased the survival rate of murine calvarial cell. 4) KS increased the expression of calcitonin receptor and PTH receptor. 5) KS increased the expression of PKA and PKC. 6) KS decreased the expression of $PLA_2$, COX, $PGE_2$ synthase, but increased prostacyclin synthase. 7) KS increased the expression of collagen(type IV) gene. It is concluded that KS might improve the osteoporosis resulted from augumentation of osteoblast proliferation and gene expression.

  • PDF

Anti-inflammatory Activity of Codium fragile in Macrophages Induced by Peptidoglycan

  • Han, Sin-Hee;Kim, Young-Guk;Lee, Su-Huan;Park, Chung-Berm;Han, Seung-Won;Jang, Hye-Jin;Lee, Hyo-Jeong;Park, Seong-Cheol;Kim, Hye-Sung;Lee, Young-Seob;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.153-158
    • /
    • 2010
  • To fine out the anti-inflammatory activities of the C. fragile. and its mechanism were investigated in macrophages induced by Peptidoglycan (PGN). Treatments of macrophages with 100 ug/ml of ethanol extract of Codium fragile (EECF) inhibited PGN-induced IL-6, NO and PGE2 production in a dose-dependent manner as well as expression of iNOS and COX-2. EECF inhibited PGN-induced extracellular signal-regulated kinase (ERK) 1/2, JNK 1/2 and p38 MAPK phosphorylation, which suggests that EECF inhibits IL-6 and NO secretion by blocking MAPKs phosphorylation. These findings may help elucidate the mechanism by which EECF modulates RAW 264.7 cell activation under inflammatory conditions.

The Comparison Between Various Solvents Extracts of Mahaenggamsuk-tang on The Anti-oxidative, Anti-inflammatory and Neuro-protective Effects (마행감석탕 용매별 추출물의 항산화, 항염증 및 뇌세포보호 효과 비교)

  • Lee, Hwan;Han, Yu-Bin;Ko, Wonmin;Kim, Nayeon;Kim, Jungyoung;Lee, Dong-Sung;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.163-170
    • /
    • 2020
  • Mahaenggamsuk-tang (MHGS) has been widely used in Korea and China for the treatment of various diseases. MHGS was constituted the Ephedrea Herba, Armenicae Semen, Glycyrrhizae Radix and Gypsum Fibrosum. In this study, we have made three different solvents extract as MHGS water extract (MHGS-W), MHGS 50% EtOH extract (MHGS-50E), and MHGS 100% EtOH extract (MHGS-100E). The MHGS-W, MHGS-50E and MHGS-100E showed the discernible difference patterns on HPLC analysis. Furthermore, MHGS-50E and MHGS-100E significantly increased the DPPH and ABTS radical scavenging effects than MHGS-W. In addition, the MHGS-50E and MHGS-100E also inhibited significantly nitric oxide (NO) and prostaglandin E2 (PGE2) production, and inducible nitric oxide synthase (iNOS) cyclooxygenase-2 (COX-2) protein expression in RAW264.7. On the other hand, MHGS-50E and MHGS-W showed remarkable protection on the HT22 cell via heme oxygenase (HO)-1, but MHGS-100E did not show. The results of this study proved that MHGS-50E has greater potential therapeutic uses by exerting antioxidant, anti-inflammatory and neuroprotective effects compared to MHGS-100E, MHGS-W. Our study suggests that the different solvent might be affected the biological activities when make the traditional herbal medicines including MHGS.