DOI QR코드

DOI QR Code

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kim, Kyoung-Hwa (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kwag, Eun-Hye (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Seol, Yang Jo (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Lee, Yong Moo (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Ku, Young (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Rhyu, In-Chul (Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2018.01.31
  • Accepted : 2018.03.04
  • Published : 2018.04.30

Abstract

Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.

Keywords

References

  1. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 1992;63 Suppl 4S:322-31. https://doi.org/10.1902/jop.1992.63.4s.322
  2. Yagan A, Kesim S, Liman N. Effect of low-dose doxycycline on serum oxidative status, gingival antioxidant levels, and alveolar bone loss in experimental periodontitis in rats. J Periodontol 2014;85:478-89. https://doi.org/10.1902/jop.2013.130138
  3. Nibali L. Aggressive periodontitis: microbes and host response, who to blame? Virulence 2015;6:223-8. https://doi.org/10.4161/21505594.2014.986407
  4. Paquette DW, Williams RC. Modulation of host inflammatory mediators as a treatment strategy for periodontal diseases. Periodontol 2000 2000;24:239-52. https://doi.org/10.1034/j.1600-0757.2000.2240112.x
  5. Zawawi KH, Kantarci A, Schulze-Spate U, Fujita T, Batista EL Jr, Amar S, et al. Moesin-induced signaling in response to lipopolysaccharide in macrophages. J Periodontal Res 2010;45:589-601. https://doi.org/10.1111/j.1600-0765.2010.01271.x
  6. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 1999;20:1945-52. https://doi.org/10.1093/carcin/20.10.1945
  7. Muller JM, Ziegler-Heitbrock HW, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993;187:233-56. https://doi.org/10.1016/S0171-2985(11)80342-6
  8. Hsu HY, Hua KF, Wu WC, Hsu J, Weng ST, Lin TL, et al. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J Cell Physiol 2008;215:15-26. https://doi.org/10.1002/jcp.21144
  9. Moon B. Molecular authentication of Magnoliae Cortex and its adulterant Machilus Cortex based on psbA-trnH DNA barcode. Korean Herb Med Inform 2014;2:67-75.
  10. Kim BH, Cho JY. Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol Sin 2008;29:113-22. https://doi.org/10.1111/j.1745-7254.2008.00725.x
  11. Munroe ME, Arbiser JL, Bishop GA. Honokiol, a natural plant product, inhibits inflammatory signals and alleviates inflammatory arthritis. J Immunol 2007;179:753-63. https://doi.org/10.4049/jimmunol.179.2.753
  12. Chao LK, Liao PC, Ho CL, Wang EI, Chuang CC, Chiu HW, et al. Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem 2010;58:3472-8. https://doi.org/10.1021/jf904207m
  13. Chen SC, Chang YL, Wang DL, Cheng JJ. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol 2006;148:226-32. https://doi.org/10.1038/sj.bjp.0706647
  14. Milind P, Isha D. Zea maize: a modern craze. Int Res J Pharm 2013;4:39-43.
  15. Yang J, Li X, Xue Y, Wang N, Liu W. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol 2014;64:276-80. https://doi.org/10.1016/j.ijbiomac.2013.11.033
  16. Hu QL, Zhang LJ, Li YN, Ding YJ, Li FL. Purification and anti-fatigue activity of flavonoids from corn silk. Int J Phys Sci 2010;5:321-6.
  17. Kim EO, Min KJ, Kwon TK, Um BH, Moreau RA, Choi SW. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem Toxicol 2012;50:1309-16. https://doi.org/10.1016/j.fct.2012.02.011
  18. Son S. Influence of standard extract of the unsaponifiable fraction of Zea mays L on periodontal disease. Quintessence Int 1982;13:895-901.
  19. Kim TI, Choi EJ, Chung CP, Han SB, Ku Y. Antimicorbial effect of Zea Mays L. and Magnoliae cortex extract mixtures on periodontal pathogen and effect on human gingival fibroblast cellular activity. J Korean Acad Periodontol 2002;32:249-55. https://doi.org/10.5051/jkape.2002.32.1.249
  20. Kim TI, Rhyu IC, Ku Y, Lee YM, Chung CP. The effect of zea Mays L. and Magnoliae Cortex extracts mixture on the rat calvarial defects: in vivo study of bone regenerative activity. J Korean Acad Periodontol 2002;32:403-14. https://doi.org/10.5051/jkape.2002.32.2.403
  21. Kim TI, Chung CP, Ku Y. The effects of Magnoliae Cortex and Zea Mays L. extract mixtures on experimentally induced periodontitis of beagle dog. J Korean Acad Periodontol 2002;32:847-55. https://doi.org/10.5051/jkape.2002.32.4.847
  22. Goncalves PF, Harris TH, Elmariah T, Aukhil I, Wallace MR, Shaddox LM. Genetic polymorphisms and periodontal disease in populations of African descent: A review. J Periodontal Res 2018;53:164-73. https://doi.org/10.1111/jre.12505
  23. Kocgozlu L, Elkaim R, Tenenbaum H, Werner S. Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res 2009;88:741-5. https://doi.org/10.1177/0022034509341166
  24. Lang N, Bartold PM, Cullinan M, Jeffcoat M, Mombelli A, Murakami S, et al. Consensus report: aggressive periodontitis. Ann Periodontol 1999;4:53. https://doi.org/10.1902/annals.1999.4.1.53
  25. Kirkwood KL, Cirelli JA, Rogers JE, Giannobile WV. Novel host response therapeutic approaches to treat periodontal diseases. Periodontol 2000 2007;43:294-315. https://doi.org/10.1111/j.1600-0757.2006.00166.x
  26. Matsuda H, Kageura T, Oda M, Morikawa T, Sakamoto Y, Yoshikawa M. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem Pharm Bull (Tokyo) 2001;49:716-20. https://doi.org/10.1248/cpb.49.716
  27. Ulbricht CE. An evidence-based systematic review of beta-sitosterol, sitosterol (22,23-dihydrostigmasterol, 24-ethylcholesterol) by the Natural Standard Research Collaboration. J Diet Suppl 2016;13:35-92.
  28. Owoyele BV, Negedu MN, Olaniran SO, Onasanwo SA, Oguntoye SO, Sanya JO, et al. Analgesic and antiinflammatory effects of aqueous extract of Zea mays husk in male Wistar rats. J Med Food 2010;13:343-7. https://doi.org/10.1089/jmf.2008.0311
  29. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:471-9. https://doi.org/10.2174/1568010054526359
  30. Chen JN, de Mejia EG, Wu JS. Inhibitory effect of a glycoprotein isolated from golden oyster mushroom (Pleurotus citrinopileatus) on the lipopolysaccharide-induced inflammatory reaction in RAW 264.7 macrophage. J Agric Food Chem 2011;59:7092-7. https://doi.org/10.1021/jf201335g
  31. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651.
  32. Ryu YS, Lee JH, Seok JH, Hong JH, Lee YS, Lim JH, et al. Acetaminophen inhibits iNOS gene expression in RAW 264.7 macrophages: differential regulation of NF-kappaB by acetaminophen and salicylates. Biochem Biophys Res Commun 2000;272:758-64. https://doi.org/10.1006/bbrc.2000.2863
  33. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev 2002;13:413-21. https://doi.org/10.1016/S1359-6101(02)00026-6
  34. Sironi M, Gadina M, Kankova M, Riganti F, Mantovani A, Zandalasini M, et al. Differential sensitivity of in vivo TNF and IL-6 production to modulation by anti-inflammatory drugs in mice. Int J Immunopharmacol 1992;14:1045-50. https://doi.org/10.1016/0192-0561(92)90149-F
  35. Kang BS, Chung EY, Yun YP, Lee MK, Lee YR, Lee KS, et al. Inhibitory effects of anti-inflammatory drugs on interleukin-6 bioactivity. Biol Pharm Bull 2001;24:701-3. https://doi.org/10.1248/bpb.24.701
  36. Dinarello CA. A clinical perspective of IL-$1{\beta}$ as the gatekeeper of inflammation. Eur J Immunol 2011;41:1203-17. https://doi.org/10.1002/eji.201141550
  37. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011;117:3720-32. https://doi.org/10.1182/blood-2010-07-273417
  38. Freire MO, Van Dyke TE. Natural resolution of inflammation. Periodontol 2000 2013;63:149-64. https://doi.org/10.1111/prd.12034

Cited by

  1. Effects of Shuganjianpihuatanxingqi decoction on mild subclinical hypothyroidism : A SPIRIT compliant randomized controlled trial study protocol vol.97, pp.45, 2018, https://doi.org/10.1097/md.0000000000013183
  2. Kaempferia parviflora Extract as a Potential Anti-Acne Agent with Anti-Inflammatory, Sebostatic and Anti- Propionibacterium acnes Activity vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113457
  3. Contact allergen (PPD and DNCB)-induced keratinocyte sensitization is partly mediated through a low molecular weight hyaluronan (LMWHA)/TLR4/NF-κB signaling axis vol.377, pp.None, 2019, https://doi.org/10.1016/j.taap.2019.114632
  4. Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.632767
  5. Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review vol.13, pp.12, 2018, https://doi.org/10.3390/pharmaceutics13122185