• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.028 seconds

Development of an Agricultural Data Middleware to Integrate Multiple Sensor Networks for an Farm Environment Monitoring System

  • Kim, Joonyong;Lee, Chungu;Kwon, Tae-Hyung;Park, Geonhwan;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • Purpose: The objective of this study is to develop a data middleware for u-IT convergence in agricultural environment monitoring, which can support non-standard data interfaces and solve the compatibility problems of heterogenous sensor networks. Methods: Six factors with three different interfaces were chosen as target data among the environmental monitoring factors for crop cultivation. PostgresSQL and PostGIS were used for database and the data middleware was implemented by Python programming language. Based on hierarchical model design and key-value type table design, the data middleware was developed. For evaluation, 2,000 records of each data access interface were prepared. Results: Their execution times of File I/O interface, SQL interface and HTTP interface were 0.00951 s/record, 0.01967 s/record and 0.0401 s/record respectively. And there was no data loss. Conclusions: The data middleware integrated three heterogenous sensor networks with different data access interfaces.

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2 Thin Films (투명한 p형 반도체 CuAlO2 박막의 일산화질소 가스 감지 특성)

  • Park, Soo-Jeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.477-482
    • /
    • 2013
  • We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type $CuAlO_2$ thin film gas sensors. The $CuAlO_2$ film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type $CuAlO_2$ active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type $CuAlO_2$ layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type $CuAlO_2$ thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of $180^{\circ}C$. We also found that these $CuAlO_2$ thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor $CuAlO_2$ thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor $CuAlO_2$ thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Microfabrication of submicron-size hole for potential held emission and near field optical sensor applications (전계방출 및 근접 광센서 응용을 위한 서브 마이크론 aperture의 제작)

  • Lee, J.W.;Park, S.S.;Kim, J.W.;M.Y. Jung;Kim, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.99-101
    • /
    • 2000
  • The fabrication of the submicron size hole has been interesting due to the potential application of the near field optical sensor or liquid metal ion source. The 2 micron size dot array was photolithographically patterned. After formation of the V-groove shape by anisotropic KOH etching, dry oxidation at $1000^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have an etch-mask for dry etching. The reactive ion etching by the inductively coupled plasma (ICP) system was performed in order to etch ~90 nm $SiO_2$ layer at the bottom of the V-groove and to etch the Si at the bottom. The negative ion energy would enhance the anisotropic etching by the $Cl_2$ gas. After etching, the remaining thickness of the oxide on the Si(111) surface was measured to be ~130 nm by scanning electron microscopy. The etched Si aperture can be used for NSOM sensor.

  • PDF

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

A development of H/W and S/W platform of remote controllable agricultural robot based on XP embedded system (XPE기반 원격방제용 농업로봇의 H/W 및 S/W 플랫폼 개발)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1125-1131
    • /
    • 2012
  • According to abrupt decrese in number of farmer and ageing society, there has been a need for development of low cost agricultural robot. In this paper, a H/W and S/W platform of caterpillar type agricultural chemical dusting robot based on XP embedded system were described. The developed agricultural robot has 2 d.o.f caterpillar type driving wheel and 2 d.o.f chemical dusting spray mechanical system. The H/W platform of the agricultural robot consists of robot controller, remote controller and sensor controller. In S/W platform, 5 processes work concurrently, which are task manager, TCP-IP communication process, localization process, wheel control, and sensor control process. This robot platform has been developed for chemical dusting robot. We proved this system's validity through field test.

Superconducting properties of layer-by-layer grown $YBa_{2}Cu_{3}O_{7}$ thin film prepared by pulsed laser deposition (펄스 레이저 증착법으로 layer-by-layer 성장시킨 $YBa_{2}Cu_{3}O_{7}$ 박막의 초전도특성)

  • Kim, In-Seon;Lim, Hae-Ryong;Kim, Dong-Ho;Park, Yon-Ki;Park, Jong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-66
    • /
    • 1998
  • High quality c-axis oriented $YBa_{2}Cu_{3}O_{7}$ films were prepared using the pulsed laser deposition on $SrTiO_{3}$(100) substrate. The atomically smooth $SrTiO_{3}$surface with terraces one unit cell in height could be obtained by a high temperature annealing. $YBa_{2}Cu_{3}O_{7}$ thin films deposited on the substrates exhibited layer-by-layer growth with a c-axis unit cell height. $YBa_{2}Cu_{3}O_{7}$ thin films thus prepared showed critical temperature ${\ge}90$ K with transition width ${\le}0.6$ K, room temperature resistivity of ${\sim}300{\mu}{\Omega}cm$, and critical current density ${\sim}4.6{\times}10^{6}A/cm^{2}$ at 77 K.

  • PDF

Gas sensing properties of $In_{2}O_{3}$ thin film prepared by spin-coating method (스핀 코팅에 의한 $In_{2}O_{3}$ 박막의 가스감지특성)

  • Chung, Wan-Young;Lim, Jun-Woo;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.117-123
    • /
    • 1998
  • The $In_{2}O_{3}$ thin films were fabricated on a alumina substrate by spin-coating method and the gas sensing properties were tested. The coating solution was synthesized by the mixing of aqueous solution of $In(OH)_{3}$ and acetic acid, and ammonium carboxymethyl cellulose as a binder. The $In_{2}O_{3}$ thin films between 71 and 210nm thick were obtained by spin-coating between 1 and 7 times followed by drying at $110^{\circ}C$ and calcining at $600^{\circ}C$. The films consisted of a dense stack of tiny $In_{2}O_{3}$ particles between 23 and 27nm in diameter and covered well large grains of the alumina substrate. Then film thickness was well controlled by the number of spin-coating. The fabricated $In_{2}O_{3}$ films showed high sensitivity and very fast response property to CO and $H_{2}$.

  • PDF

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.