DOI QR코드

DOI QR Code

Development of an Agricultural Data Middleware to Integrate Multiple Sensor Networks for an Farm Environment Monitoring System

  • Kim, Joonyong (Dept. of Biosystems Engineering, Seoul National University) ;
  • Lee, Chungu (Dept. of Biosystems Engineering, Seoul National University) ;
  • Kwon, Tae-Hyung (Dept. of Biosystems Engineering, Seoul National University) ;
  • Park, Geonhwan (Div. Of Horticulture Industrial Research, Gyeonggido Agricultural Research & Extension Services) ;
  • Rhee, Joong-Yong (Dept. of Biosystems Engineering, Seoul National University)
  • Received : 2012.11.19
  • Accepted : 2013.03.07
  • Published : 2013.03.01

Abstract

Purpose: The objective of this study is to develop a data middleware for u-IT convergence in agricultural environment monitoring, which can support non-standard data interfaces and solve the compatibility problems of heterogenous sensor networks. Methods: Six factors with three different interfaces were chosen as target data among the environmental monitoring factors for crop cultivation. PostgresSQL and PostGIS were used for database and the data middleware was implemented by Python programming language. Based on hierarchical model design and key-value type table design, the data middleware was developed. For evaluation, 2,000 records of each data access interface were prepared. Results: Their execution times of File I/O interface, SQL interface and HTTP interface were 0.00951 s/record, 0.01967 s/record and 0.0401 s/record respectively. And there was no data loss. Conclusions: The data middleware integrated three heterogenous sensor networks with different data access interfaces.

Keywords

References

  1. Bae, K. S., S. O. Chung, K. D. Kim, S. O. Hur and H. J. Kim. 2011. Implementation of remote monitoring scenario using CDMA short message service for protected crop production environment. Journal of Biosystems Engineering 36(4):279-284. https://doi.org/10.5307/JBE.2011.36.4.279
  2. Blauth, D. A. and J. R. Ducati. 2010. A Web-based system for vineyards management, relating inventory data, vectors and images. Computers and Electronics in Agriculture 71(2):182-188. https://doi.org/10.1016/j.compag.2010.01.007
  3. Broring, A., J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang and R. Lemmens. 2011. New generation sensor web enablement. Sensors 11 (3):2652-2699. https://doi.org/10.3390/s110302652
  4. Bunting, E.S. 1976. Accumulated temperature and maize development in England. The Journal of Agriculture Science 87(3):577-583. https://doi.org/10.1017/S0021859600033207
  5. Chae J.C. and D. k. Jun. 2004. Utility of accumulative air temperature during, ripening stage for judgment of optimum harvest time in rice cultivation. Korean J. Crop Sci. 49(6):552-562 (In Korean).
  6. Demetriades-Shah, T.H., M. Fuchs and E.T. Kanemasu, I. Flitcroft. 1992. A note of caution concerning the relationship between cumulated intercepted solar radiation and crop growth. Agricultural and Forest Meteorology 58(3-4):193-207. https://doi.org/10.1016/0168-1923(92)90061-8
  7. Gigan, G. and I. Atkinson. 2007. Sensor Abstraction Layer: a unique software interface to effectively manage sensor networksIntelligent Sensors, Sensor Networks and Information 2007. ISSNIP 2007. 3rd International Conference on, 3-6 Dec. 2007.
  8. Han, J.H., I. C. Son, I. M. Choi, S. H. Kim, J. G. Cho, S. K. Yun, H. C. Kim and T. C. Kim. 2011. Predicting harvest date of 'Niitaka' pear by using full bloom date and growing season weather. Kor. J. Hort. Sci. Technol. 29(6):549-554. (In Korean)
  9. ISO. 2007. ISO 11783-1:2007. Tractors and machinery for agriculture and forestry - Serial control and communications data network - Part 1: General standard for mobile data communication: ISO.
  10. Kim, G. Y., K. A. Sudduth, S. A. Grant and N. R. Kitchen. 2012a. Disposable nitrate-selective optical sensor based on fluorescent dye. Journal of Biosystems Engineering 37(3):209-213. https://doi.org/10.5307/JBE.2012.37.3.209
  11. Kim, J. Y., S. H. Yang, C. G. Lee, Y. J. Kim, H. J. Kim, S. I. Cho and J. Y. Rhee. 2012b. Modeling of solar radiation using silicon solar module. Journal of Biosystems Engineering 37(1):11-18. https://doi.org/10.5307/JBE.2012.37.1.011
  12. ClientCookie. 2012. ClientCookie. Ver.1.3.0. Available at: http://wwwsearch.sourceforge.net/old/ClientCookie/.
  13. Lee, W. S., V. Alchanatis, C. Yang, M. Hirafuji, D. Moshou and C. Li. 2010. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture 74(1):2-33. https://doi.org/10.1016/j.compag.2010.08.005
  14. MySQLdb. 2012. MySQLdb. Ver.1.2.3. Available at: http://mysql-python.sourceforge.net/.
  15. Nash, E., P. Korduan and R. Bill. 2009. Applications of open geospatial web services in precision agriculture: a review. Precision Agriculture 10(6):546-560. https://doi.org/10.1007/s11119-009-9134-0
  16. Nemenyi, M., P. A. Mesterhazi, Z. Pecze and Z. Stepan. 2003. The role of GIS and GPS in precision farming. Computers and Electronics in Agriculture 40(1-3): 45-55. https://doi.org/10.1016/S0168-1699(03)00010-3
  17. Nikkila, R., I. Seilonen and K. Koskinen. 2010. Software architecture for farm management information systems in precision agriculture. Computers and Electronics in Agriculture 70(2):328-336. https://doi.org/10.1016/j.compag.2009.08.013
  18. NIPA. 2010. Installation and management of USN based crop growth environment management system. (In Korean)
  19. OGC. Open Geospatial Consortium. Available at: http://www.opengeospatial.org. Accessed 10 September 2012
  20. PostGIS. 2012. PostGIS. Ver.1.5.3-2. Refractions Research. Available at: http://postgis.refractions.net/.
  21. PostgreSQL. 2012. PostgreSQL. Ver.9.1.5. The PostgreSQL Global Development Group. Available at: http://www.postgresql.org/.
  22. Quiros, C., P. K. Thornton, M. Herrero, A. Notenbaert and E. Gonzalez-Estrada. 2009. GOBLET: An open-source geographic overlaying database and query module for spatial targeting in agricultural systems. Computers and Electronics in Agriculture 68(1):114-128. https://doi.org/10.1016/j.compag.2009.05.001
  23. Schweik, C. M., A. Stepanov and J. M. Grove. 2005. The open research system: a web-based metadata and data repository for collaborative research. Computers and Electronics in Agriculture 47(3):221-242. https://doi.org/10.1016/j.compag.2004.12.006
  24. Steinberger, G., M. Rothmund and H. Auernhammer. 2009. Mobile farm equipment as a data source in an agricultural service architecture. Computers and Electronics in Agriculture 65(2):238-246. https://doi.org/10.1016/j.compag.2008.10.005
  25. Vellidis, G., M. Tucker, C. Perry, C. Kvien and C. Bednarz. 2008. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture 61(1):44-50. https://doi.org/10.1016/j.compag.2007.05.009
  26. Wang, N., N. Zhang and M. Wang. 2006. Wireless sensors in agriculture and food industry-Recent development and future perspective. Computers and Electronics in Agriculture 50(1):1-14. https://doi.org/10.1016/j.compag.2005.09.003
  27. Zapata, N., I. Chalgaf, E. Nerilli, B. Latorre, C. Lopez, A. Martínez-Cob, J. Girona and E. Playan. 2012. Software for on-farm irrigation scheduling of stone fruit orchards under water limitations. Computers and Electronics in Agriculture 88(0):52-62. https://doi.org/10.1016/j.compag.2012.07.001