• 제목/요약/키워드: $NO_x$ gas

검색결과 562건 처리시간 0.025초

디젤 NOx 후처리 장치에 있어서 암모니아 SCR 시스템 혼합영역 내 가스유동의 유입열 수치모델링에 관한 연구 (A Study on Numerical Modeling of the Induced Heat to Gaseous Flow inside the Mixing Area of Ammonia SCR System in Diesel Nox After-treatment Devices)

  • 배명환;샤이풀
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.897-905
    • /
    • 2008
  • Selective catalytic reduction(SCR) is known as one of promising methods for reducing $NO_x$ emissions in diesel exhaust gases. $NO_x$ emissions react with ammonia in the catalyst surface of SCR system at working temperature of catalyst. In this study, to raise the reacting temperature when the exhaust gas temperature is too low, a heater is located at the bottom of SCR reactor. At an ambient temperature, ammonia is radially injected perpendicular to the exhaust gas flow at inlet pipe and uniformly mixed in the mixing area after being impinged against the wall. To predict the turbulent model inside the mixing area of SCR system, the standard ${\kappa}\;-\;{\varepsilon}$ model is applied. This work investigates numerically the effects of induced heat on the gaseous flow. The results show that the Taylor-$G{\ddot{o}}rtler$ type vortex is generated after the gaseous flow impinges the wall in which these vortices influence the temperature distribution. The addition of heat disturbs the flow structure in bottom area and then stretching flow occurs. Vorticity strand is also formed when heat is continuously increased. Constriction process takes place, however, when a further heat input over a critical temperature is increased and finally forms shed vortex which is disconnected from the vorticity strand. The strong vortex restricts the heat transport in the gaseous flow.

중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자 (Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine)

  • 김홍석;정용일;송명호;이성욱;박현대;황재원
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

초음파 수첨가 연소에 의한 석유 홴 히터의 배기가스 특성 고찰 (An Investigation of Combustion Emission Characteristics of Kerosene Fan Heater with Addition of Water Droplets by Ultrasonic Atomizer)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.44-53
    • /
    • 1999
  • This study is concerned with the emission characteristics of kerosene fan heater, which is burned with kerosene and water droplets simultaneously in the burner, in order to prohibit the emissions of harmful exhaust gas and reduce smell caused by incomplete combustion, and the addition of water droplets to the conventional kerosene fan heater was performed by ultrasonic atomizer. For the investigation of this study, the measurement of exhaust gas components and exhaust gas temperature was carried out by using an automatic combustion gas analyser and $NO_x$ analyser, and the measurement of consumption weight of oil and water was obtained by using electric digital balance. Consequently, according as the water percent weight ratio of about $21{\sim}23%$ was supplied for this study, it was found that the combustion-generated $NO_x$ and CO emissions were reduced very largely, but the emissions of $O_2\;and\;CO_2$ and the temperature of exhaust gas were not changed.

  • PDF

알루미나에 담지된 플라티늄을 이용한 $NO_X$의 전환반응에 미치는 요인 분석 (Analysis of $NO_X$ Conversion Reaction using Platinum supported on Alumina)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.168-174
    • /
    • 2005
  • Aluminum tri-butoxide was mixed with the water/ethanol solution and then chloroplatinic acid was added to the solution. The solution was dried at $100^{\circ}C$ for 15hrs to remove the solvent and water then it was calcined at $500^{\circ}C$. The catalyst was activated with a gas mixture. During the activation, the temperature was increased from $150^{\circ}C$ to $500^{\circ}C$. The necessary amount of urea was dissolved in 50mL water and injected. Aqueous urea solution was then mixed with the feed gas stream. At low temperatures, nitrogen containing compounds of urea decomposition are used as reductants in the reducton of $NO_X$. However at high temperatures the nitrogen containing compounds are oxidized to NO and $NO_2$ by oxygen instead of being used in the reduction. The activity of the catalyst was dependent on urea concentration in the feed stream when there was not adequate water vapor in the feed. The maximum conversion was shifted from $250^{\circ}C$ to $150^{\circ}C$ when water concentration was increased from 2 to 17%. It seems that the maximum temperature shifts to lower temperatures because the hydrolysis rate of HNCO increases with water, resulting in higher amounts of $NH_3$.

디젤엔진의 $NO_X$ 저감을 위한 SCR $DeNO_X$ 촉매의 모델링 및 성능해석 (Modeling and Performance Analysis of SCR $DeNO_X$ Catalyst for Reducing $NO_X$ Emissions in Diesel Engine)

  • 김영득;김우승;이천환
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.137-145
    • /
    • 2009
  • The steady-state kinetics of the selective catalytic reduction (SCR) of $NO_X$ with $NH_3$ has been investigated over a commercial ${V_2}{O_5}/TiO_2$ catalyst. In order to account for the influence of transport effects the kinetics are coupled with a fully transient two-phase 1D+1D monolith channel model. The Langmuir-Hinshelwood (L-H) mechanism is adopted to describe the steady-state kinetic behavior of the ${V_2}{O_5}/TiO_2$ catalyst. The reaction rate expressions are based on previously reported papers and are modified to fit the experimental data. The steady-state chemical reaction scheme used in the present mathematical model has been validated extensively with experimental data of selective $NO_X$ reduction efficiency for a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration, and $NO_2/NO$ ratio. The parametric investigations are performed to examine how the $NH_3$ slip from a SCR $DeNO_X$ catalyst and the conversion of $NO_X$ are affected by the reaction temperature, $NH_3/NO_X$ feed ratio, and space velocity for feed gas compositions with $NO_2/NO_X$ ratios of 0 and 0.5.

NO2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Shim, Kwang-Bo
    • 한국결정성장학회지
    • /
    • 제22권2호
    • /
    • pp.84-91
    • /
    • 2012
  • Single and few-layer graphene nanosheets (GNs) have successfully synthesized by a modified Hummer's method followed by chemical reduction of exfoliated graphene oxide (GO) in the presence of hydrazine monohydrate. GO and GNs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Optical microscopy (OM) and by electrical conductivity measurements. The result showed that electrical conductivity of GNs was significantly improved, from $4.2{\times}10^{-4}$ S/m for GO to 12 S/m for GNs, possibly due to the removal of oxygen-containing functional group during chemical reduction. In addition, the $NO_2$ gas sensing characteristics of GNs are also discussed.

HCNG 엔진의 배출가스 특성에 따른 상용화 타당성 연구 (A Study on Commercialization Feasibility of HCNG Engine in Emissions Characteristics)

  • 박철웅;김창기;최영;이장희
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2013
  • $NO_x$ 배출허용기준이 강화되는 배출가스 규제에 대응하기 위한 대안으로서 제시되는 천연가스-수소 혼합연료 (HCNG)는 수소의 빠른 화염속도와 넓은 가연범위를 이용하여 후처리 장치 없이 규제치를 만족할 수 있어 디젤엔진에 비해 저공해성이나 가격경쟁력 측면에서 유리한 장점이 있다. 열효율 측면에서도 우수성을 인정받는 HCNG 연료는 수소 혼합율은 물론 운전영역별 운전전략에 따라 연소특성이 달라진다. 본 연구에서는 대형 천연가스 엔진에 수소혼합율 30%의 HCNG 연료를 적용하여 운전영역별 안정적인 연소특성 및 배출가스 특성을 살펴봄으로써 상용화 가능성과 운전전략을 포함한 기술 개발방향에 대해 검토하고자 하였다.

순산소 순환유동층에서 로내 탈황 및 탈질법 적용에 따른 오염물질 거동특성 (Pollutants Behavior in Oxy-CFBC by Application of In-Furnace deSOx/deNOx Method)

  • 최경구;나건수;신지훈;길상인;이정규;허필우;윤진한
    • 청정기술
    • /
    • 제24권3호
    • /
    • pp.212-220
    • /
    • 2018
  • 순산소 연소기술은 화력발전에 적용 가능한 유망한 온실가스 감축 기술로 평가되고 있다. 본 연구는 환경적 관점에서 순환유동층을 활용한 순산소 연소조건에 로 내 탈황 및 탈질법을 적용하여 NO 및 $SO_2$의 거동을 살펴보는 한편, $SO_3$, $NH_3$, 그리고 $N_2O$의 발생 경향도 관측하였다. 이를 위해, 연소로 내 석회석 및 요소수를 투입하였다. 로 내 탈황법은 연소가스 내 $SO_2$ 농도를 ~403에서 ~41 ppm까지 저감하였다. 또한 $SO_3$ 형성의 주원료인 $SO_2$가 저감되면서 연소가스 내 $SO_3$ 농도도 ~3.9에서 ~1.4 ppm까지 감소되었다. 그러나 석회석 내 $CaCO_3$가 NO의 발생을 촉진하는 현상도 관측되었다. 연소가스 내 NO 농도는로 내 탈질법을 적용하여 ~26 - 34 ppm까지 저감되었다. 요소수 투입량 증가에 따라 연소가스 내 $NH_3$ 농도가 증가하여 최대 ~1.8 ppm으로 나타났으며, $N_2O$의 농도도 ~61에서 ~156 ppm까지 증가하였다. $N_2O$ 발생량 증가 현상은 요소수의 열분해 과정에서 생성된 HNCO가 $N_2O$로 전환되어 나타난다. 본 연구의 결과를 통해 로 내 연소가스 세정법을 적용할 경우 $NO_x$$SO_x$의 저감뿐만 아니라, 다른 오염물질의 발생에 대한 주의가 필요할 것으로 보인다.

코로나 방전-EGR 조합시스템에 의한 디젤기관의 배기 가스 특성 (The Characteristics of Exhaust Gas in Diesel Engine by Corana Discharge-EGR System)

  • 박재윤;정장근;김종석;하현진
    • 조명전기설비학회논문지
    • /
    • 제19권7호
    • /
    • pp.39-44
    • /
    • 2005
  • 고연료 중 대부분이 수소와 탄소의 결합물이다. 연료들은 엔진 내부에서 완전 연소되었을 경우는 수분인 증기와 $CO_2$가 발생된다. 그러나 대개 불완전 연소가 일어나 $NO_x$나 Smoke가 발생되어진다. 그리고 이 물질은 인해에 매우 해로운 물질들이다. 본 논문에서는 EGR과 상용주파수를 이용한 플라즈마 장치를 조합하여 배기가스 유해물질 제거 특성을 연구하였다. $NO_x$의 경우에는 전압과 EGR율이 증가할수록 유해물질 제거 특성이 우수하였고, Smoke의 경우에는 EGR 율이 증가하게 되면 Smoke의 발생율이 증가하였으나 전압이 증가하게 되면 발생율이 감소하였다.

배기가스 재순환이 비예혼합 연소시스템에 미치는 영향 (The Effects of Exhaust Gas Recirculation on Non-premixed Combustion)

  • 유병훈;김진수;이창언
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.26-33
    • /
    • 2014
  • We examined the characteristics of $NO_x$ emission for CH4/air non-premixed flames using the exhaust gas recirculation(EGR) methods, which are the air-induced EGR(AI-EGR) and fuel-induced EGR(FI-EGR) methods. Our experimental results show that the $NO_x$ emission index($EI_{NOx}$) decreased with increasing EGR ratio. In the range needed to form a stable flame, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 29% when the EGR ratio was 20%, and the reduction rate for the AI-EGR method was approximately 28% with 25% of the EGR ratio. According to the flame structure based on numerical results, high temperature regions for the FI-EGR method were narrower and lower than those for the AI-EGR method at the same EGR ratio. Furthermore, based on the experimental results for swirl flames, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 49% with 15% of the EGR ratio, while the maximum reduction rate for AI-EGR method was approximately 45% with 25% of the EGR ratio. Consequently, we verified that the FI-EGR method was more effective than the AI-EGR method in reducing $NO_x$ emission for non-premixed flames with EGR. We expect that the results of this study will provide fundamental information relating to hybrid combustion systems, which can be used in the design of combustion systems in the future.