DOI QR코드

DOI QR Code

Pollutants Behavior in Oxy-CFBC by Application of In-Furnace deSOx/deNOx Method

순산소 순환유동층에서 로내 탈황 및 탈질법 적용에 따른 오염물질 거동특성

  • Choi, Gyung-Goo (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Na, Geon-Soo (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Shin, Ji-Hoon (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Keel, Sang-In (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Lee, Jung-Kyu (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Heo, Pil-Woo (Department of Environmental Machinery, Koera Institute of Machinery & Materials) ;
  • Yun, Jin-Han (Department of Environmental Machinery, Koera Institute of Machinery & Materials)
  • 최경구 (한국기계연구원 환경기계연구실) ;
  • 나건수 (한국기계연구원 환경기계연구실) ;
  • 신지훈 (한국기계연구원 환경기계연구실) ;
  • 길상인 (한국기계연구원 환경기계연구실) ;
  • 이정규 (한국기계연구원 환경기계연구실) ;
  • 허필우 (한국기계연구원 환경기계연구실) ;
  • 윤진한 (한국기계연구원 환경기계연구실)
  • Received : 2018.05.23
  • Accepted : 2018.06.15
  • Published : 2018.09.28

Abstract

Oxy-fuel combustion is considered as a promising greenhouse gas reduction technology in power plant. In this study, the behaviors of NO and $SO_2$ were investigated under the condition that in-furnace $deNO_x$ and $deSO_x$ methods are applied in oxy-fuel circulating fluidized bed combustion condition. In addition, the generation trends of $SO_3$, $NH_3$ and $N_2O$ were observed. For the purpose, limestone and urea solution were directly injected into the circulating fluidized bed combustor. The in-furnace $deSO_x$ method using limestone could reduce the $SO_2$ concentration in exhaust gas from ~403 to ~41 ppm. At the same experimental condition, the $SO_3$ concentration in exhaust gas was also reduced from ~3.9 to ~1.4 ppm. This trend is mainly due to the reduction of $SO_2$. The $SO_2$ is the main source of the formation of $SO_3$. The negative effect of $CaCO_3$ in limestone, however, was also appeared that it promotes the NO generation. The NO concentration in exhaust gas reduced to ~26 - 34 ppm by appling selective non-catalytic reduction method using urea solution. The $NH_3$ concentration in exhaust gas was appeared up to ~1.8 ppm during injection of urea solution. At the same time, the $N_2O$ generation also increased with increase of urea solution injection. It seems that the HNCO generated from pyrolysis of urea converted into $N_2O$ in combustion atmosphere. From the results in this study, the generation of other pollutants should be checked as the in-furnace $deNO_x$ and $deSO_x$ methods are applied.

순산소 연소기술은 화력발전에 적용 가능한 유망한 온실가스 감축 기술로 평가되고 있다. 본 연구는 환경적 관점에서 순환유동층을 활용한 순산소 연소조건에 로 내 탈황 및 탈질법을 적용하여 NO 및 $SO_2$의 거동을 살펴보는 한편, $SO_3$, $NH_3$, 그리고 $N_2O$의 발생 경향도 관측하였다. 이를 위해, 연소로 내 석회석 및 요소수를 투입하였다. 로 내 탈황법은 연소가스 내 $SO_2$ 농도를 ~403에서 ~41 ppm까지 저감하였다. 또한 $SO_3$ 형성의 주원료인 $SO_2$가 저감되면서 연소가스 내 $SO_3$ 농도도 ~3.9에서 ~1.4 ppm까지 감소되었다. 그러나 석회석 내 $CaCO_3$가 NO의 발생을 촉진하는 현상도 관측되었다. 연소가스 내 NO 농도는로 내 탈질법을 적용하여 ~26 - 34 ppm까지 저감되었다. 요소수 투입량 증가에 따라 연소가스 내 $NH_3$ 농도가 증가하여 최대 ~1.8 ppm으로 나타났으며, $N_2O$의 농도도 ~61에서 ~156 ppm까지 증가하였다. $N_2O$ 발생량 증가 현상은 요소수의 열분해 과정에서 생성된 HNCO가 $N_2O$로 전환되어 나타난다. 본 연구의 결과를 통해 로 내 연소가스 세정법을 적용할 경우 $NO_x$$SO_x$의 저감뿐만 아니라, 다른 오염물질의 발생에 대한 주의가 필요할 것으로 보인다.

Keywords

References

  1. IEA Energy Data Centre, "$CO_2$ Emissions from Fuel Combustion Highlights," IEA Publications, Paris, France (2015).
  2. Nierop, S., Vree, B., and Kielichowska, I., "International Comparison of Fossil Power Efficiency and $CO_2$ Intensity," Ecofys Consultancy, Project No. ESMNL17100 (2016).
  3. IEA Greenhous Gas R&D Programme, "Oxy Combustion Processes for $CO_2$ Capture from Power Plants," Report No. 2005/09 (2005).
  4. IEA Greenhous Gas R&D Programme, "Potentail for Improvement in Gasification Combined Cycle Power Generation with Capture of $CO_2$," Report No. PH4/33 (2004).
  5. Yan, J., Anheden, M., Lindgren, G., and Stroberg, L., "Conceptual Development of Flue Gas Cleaning for $CO_2$ Capture from Coal-Fired Oxyfuel Combustion Power Plant," Eighth International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway (2006).
  6. Tan, L.., Li, S., Li, W., Shou, E., and Lu, Q., "Effects of Oxygen Staging and Excess Oxygen on $O_2$/$CO_2$ Combustion with a High Oxygen Concentration in A Circulating Fluidized Bed," Energy & Fuels, 28(3), 2069-2075 (2014) https://doi.org/10.1021/ef500051c
  7. Zhou, J. X., Shao, Z., Si, F. Q., and Xu, Z. G., "Dynamic Tests and Results in an Oxy-Fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle," Energy & Fuels, 28(12), 7616-7620 (2014). https://doi.org/10.1021/ef502006f
  8. Hayhurst, A. N., and Lawrence, A. D., "Emissions of Nitrous Oxide from Combustion Sources," Prog. Energ. Combust., 18(6), 529-552 (1992). https://doi.org/10.1016/0360-1285(92)90038-3
  9. Hill, R. D., Rahmim, I., and Rinker, R. G., "Experimental Study of the Production of Nitric Oxide, Nitrous Oxide, and Ozone in a Simulated Atmospheric Corona," Ind. Eng. Chem. Res., 27(7), 1264-1269 (1988). https://doi.org/10.1021/ie00079a029
  10. Ford, J. S., "EPA Recommended Operating Procedure No. 45: Analysis of Nitrous Oxide from Combustion Sources," EPA-600/8/90/053, (1990).
  11. Weiss, R. F., "EPA workshop on $N_2O$ Emission from Combustion," p. 31 (1986).
  12. EPA, National Council for Air and Stream Improvement (NCASI) Southern Regional Center "EPA method 8A: Determination of Sulfuric Acid Vapor or Mist and Sulfur Dioxide Emissions from Kraft Recovery Furnaces."
  13. EPA Emission Measurement Center (EMC) of the Office of Air Quality Planning and Standards (OAQPS), "Method 8: Determination of Sulfuric Acid and Sulfur Dioxide Emissions from Stationary Sources."
  14. Fleig, D., Vainio, E., Andersson, K., Brink, A., Johnsson, F., and Hupa, M., "Evaluation of $SO_3$ Measurement Techniques in Air and Oxy-Fuel Combustion," Energy & Fuels, 26(9), 5537-5549 (2012). https://doi.org/10.1021/ef301127x
  15. Vainio, E., Fleig, D., Brink, A., Andersson, K., Johnsson, F., and Hupa, M., "Experimental Evaluation and Field Application of a Salt Method for $SO_3$ Measurement in Flue Gases," Energy & Fuels, 27(5), 2767-2775 (2013). https://doi.org/10.1021/ef400271t
  16. Garcia-Labiano, F., Rufas, A., Luis, F., de las Obras-Loscertales, M., Gayan, P., Abad, A., and Adanez, J., "Calcium-Based Sorbents Behaviour during Sulphation at Oxy-Fuel Fluidised Bed Combustion Conditions," Fuel, 90(10), 3100-3108 (2011). https://doi.org/10.1016/j.fuel.2011.05.001
  17. Wang, L., Li, S., and Eddings, E. G., "Fundamental Study of Indirect vs Direct Sulfation Under Fluidized Bed Conditions," Ind. Eng. Chem. Res., 54(14), 3548-3555 (2015). https://doi.org/10.1021/ie504774r
  18. Li, T., Zhuo, Y., Chen, C., and Xu, X., "Effect of CaO on $NH_3$+NO+$O_2$ Reaction System in the Absence and Presence of High Concentration $CO_2$," Asia-Pac. J. Chem. Eng., 5(2), 287-293 (2010). https://doi.org/10.1002/apj.262
  19. Stanger, R., and Wall, T., "Sulphur Impacts during Pulverised Coal Combustion in Oxy-Fuel Technology for Carbon Capture and Storage," Prog. Energ. Combust., 37(1), 69-88 (2011). https://doi.org/10.1016/j.pecs.2010.04.001
  20. Fleig, D., Andersson, K., and Johnsson, F., "Influence of Operating Conditions on $SO_3$ Formation during Air and Oxy-Fuel Combustion," Ind. Eng. Chem. Res., 51(28), 9483-9491 (2012). https://doi.org/10.1021/ie301303c
  21. Ljungdahl, B., and Larfeldt, J., "Optimised $NH_3$ Injection in CFB boilers," Powder Technol., 120(1-2), 55-62 (2001). https://doi.org/10.1016/S0032-5910(01)00347-3
  22. http://nifds.go.kr/toxinfo/Index.
  23. Hossain, K. A., Jaafar, M. N. M., Mustafa, A., Appalanidu, K. B., and Ani, F. N., "Application of Selective Non-Catalytic Reduction of $NO_x$ in Small-Scale Combustion Systems," Atmos. Environ., 38(39), 6823-6828 (2004). https://doi.org/10.1016/j.atmosenv.2004.09.012
  24. Tan, L., Li, S., Li, W., Shou, E., and Lu, Q., "Effects of Oxygen Staging and Excess Oxygen on $O_2$/$CO_2$ Combustion with a High Oxygen Concentration in a Circulating Fluidized Bed," Energy & Fuels, 28(3), 2069-2075 (2014). https://doi.org/10.1021/ef500051c
  25. Yim, S. D., Kim, S. J., Baik, J. H., Nam, I. S., Mok, Y. S., Lee, J. H., Cho, B. K., and Oh, S. H., "Decomposition of Urea into $NH_3$ for the SCR Process," Ind. Eng. Chem. Res., 43(16), 4856-4863 (2004). https://doi.org/10.1021/ie034052j