• Title/Summary/Keyword: $NO_3-N:NH_4-N$ ratio

Search Result 208, Processing Time 0.025 seconds

Effect of Organic Acids Fermented from the Settled Sludge and Animal Organic Wastes on the Denitrification (침전 슬러지와 가축분의 유기산화 및 발효유기산이 탈질반응에 미치는 영향)

  • Weon, Seung-Yeon;Park, Seung-Kook;Min, Kyung-Kook;Chung, Keun-Yook;Jun, Byong-Hee;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2005
  • Fermentation efficiencies of organic wastes from the variety of sources were evaluated based on the production of total volatile acids(TVA) in batch reactor. Mixing and pH were not significant factors in producing TVA from the organic wastes. After a 10-day fermentation, final TVA concentrations in piggery, cattle, poultry, and primary settled sludge of domestic wastewater were 8,900, 2,900, 7,370 and 1,630 mg/L, respectively. The pH of organic wastes was decreased from neutral to 5.7. The ratio of TVA to $NH_4{^+}-N$ produced from the animal waste ranged from 11.5 to 30.1, whereas, that in the primary settled sludge of domestic wastewater, was 5.4. Possibility of fermented organic wastes as the electron donors for denitrification in the activated sludge was investigated. In both acclimated and nonacclimated activated sludge, higher denitrification rates were obtained with fermented piggery sludge added than with either methanol or acetate added. The fermented organic acids derived from the primary settled sludge gave the higher denitrification rate ($4.2mg\;NO_3-N/g\;vss{\cdot}hr$) in the acclimated activated sludge. Denitrification rate was $1.5mg\;NO_3-N/g\;vss{\cdot}hr$ in the nonacclimated sludge with the fermented acids from the primary settled sludge of domestic wastewater added.

Isolation and Characterization of a Naphthalene-Degrading Strain,Alcaligenes sp,A111 (Naphthalene 분해균주 Alcaligenes sp. A111의 분리 및 특성)

  • Oh, Hee-Mock;Kang, Jung-Hyun;Lee, Chang-Ho;Park, Chan-Sun;Ahn, Sung-Ku;Yoon, Byung-Dae;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.423-429
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing naphthalene as a vapor phase and grew well ina liquid minimal medium was isolated and identified as Alcaligenes sp. A111. Optimum temperature and pH for the cultivation of Alcaligenes sp. A111 were 30$\cir$C and 7.0, respectively. Cell growth increased dramatically from 12 hours after inoculation and revealed a stationary phase at about 48 hours. Relative growth rate ($\mu$')increased hyperbolically depending on the conceration of naphthalene up to 500 ppm and reached to the maximum value pf 2.8/day, but $\mu$' didn't change within a range of 500~4000 ppm naphthalene. NH$_{4}$Cl or NH$_{4}$NO$_{3}$ was preferrd as a nitrogen source and a P : N ratio by weight og 6 : 1 was favorable to cell growth. Alcaligenes sp. A111 utilized the intermediates of degradation of naphthalene and showed tolerance to benzene, toluene, and octane. therefore, it is suggested that Alcaligenes sp. A111 could be effectively used for the biological treatment of wastewater containing naphthalene in the presence of some aromatic compounds.

  • PDF

Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area

  • Lee, Gyeong-Mi;Park, Sunhwa;Kim, Ki-In;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Tae-Seung;Yun, Seong-Taek;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • We investigated 52 livestock farming complexes in Gyeong-Gi and Incheon provinces based on low, medium, and high livestock density and groundwater quality. The objective of this study was to evaluate a relationship between nitrate N concentration in groundwater and animal factors, such as livestock density and animal species. 2,200 groundwater samples for 3 years from 2012 to 2014 at Gyeong-Gi and Incheon provinces were collected and analyzed for pH, EC, DO, ORP, temperature, major anions and cations, such as $NO_3-N$, ${HCO_3}^-$, ${PO_4}^-$, ${SO_4}^{2-}$, $Cl^-$, $NH_4-N$, $K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, T-N, and TOC. Average concentration of total N for generated load density was $23,973g\;day^{-1}\;km^{-2}$ for cattle, $51,551g\;day^{-1}\;km^{-2}$ for pig, and $52,100g\;day^{-1}\;km^{-2}$ for poultry. For animal feeding species, average ratio for generated load over discharge load was 16.1% for cattle, 7.8% for pig, and 7.1% for poultry. Therefore, cattle feeding region is highly vulnerable for water pollution compared to pig and poultry feeding areas. The concentrations of chloride, nitrate, and total N in the groundwater samples were higher at high animal farming regions than other regions. The average concentration of nitrate, and chloride in groundwater samples was $5.0mg\;L^{-1}$, $16.6mg\;L^{-1}$ for low livestock density, $6.9mg\;L^{-1}$, $17.7mg\;L^{-1}$ for medium livestock density and $7.6mg\;L^{-1}$, $22.7mg\;L^{-1}$ for high livestock density and total nitrogen (T-N) was $7.7mg\;L^{-1}$ for low livestock density, $9.4mg\;L^{-1}$ for medium livestock density, $10.7mg\;L^{-1}$ for high livestock density. In conclusion, based on this research, for managing groundwater quality near livestock farming regions, $Ca-(Cl+NO_3)$ group from the Piper diagram is more efficient than using 19 factors for water quality standard.

Effects of TDN/CP Ratio on Nutrient Intake, Digestibility, Ruminal Fermentation and Blood Characteristics of Replacement Dairy Heifers (TDN/CP 비율에 의한 영양소 공급이 젖소 육성우의 영양소 섭취량, 소화율, 반추위 발효 및 혈액특성에 미치는 영향)

  • Kim, Gyeom-Heon;Kim, Hyun-Jin;Hwang, Won-Uk;Kim, Soo-Ki
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.153-162
    • /
    • 2016
  • This study was conducted to investigate a proper management and nutrient supply for raising replacement heifers to improve lactating performance. In order to determine a proper TDN/CP ratio that would be suitable for domestic use, 13-month-old replacement heifers were fed in the ratios of 4.6:1(T1) and 4.3:1(T2), respectively, to examine the changes in nutritional intake, digestibility, characteristics of rumen fluid and blood compositions. While dry matter intake was same at 9.0kg/day, CP intake did not show any significant difference, though T2(1.45kg/day) was slightly higher than T1(1.34kg/day). In fiber intake and digestibility, two results showed no significant difference, though T1 was slightly higher than T2. The pH, NH3-N and VFA densities in rumen fluid examined at the fourth hour after feed intake did not show any significant difference either. Overall level of VFA was not influenced largely by the TDN/CP ratio, but the iso-butyrate and iso-valerate levels and the A/P ratio were significantly high in T1(p<0.05). In blood characteristics, the treatments showed no significant difference. In conclusion, the TDN/CP ratios of 4.3:1 and 4.6:1 did not significantly affect the characteristics of the ruminant stomach, but in comparison with digestibility of 13-month-old heifers, the ratio of 4.6:1 was more appropriate for increased intake of fiber and higher digestibility.

M-dephanox Process with Rotating Biological Contactor (RBC) in Nitirification Reactor (회전원판형 질화조를 이용한 M-dephanox 공정)

  • Kim, Keum-Yong;Kang, Min-Koo;Shin, Gwan-Woo;Kang, Jung-Kyu;Shin, Min-Su;Kang, Han-Sol;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was focused on improving nitrification efficiencies of M-dephanox (Modified-Dephanox) process. Rotating biological contactor (RBC) was used instead of floating sponge type media in nitrification reactor. High ammonia removal efficiencies were observed in nitrification reactor, regardless of organic loading from contactor of M-dephanox process. Denitrification efficiencies were also increased to maintain low $NO_3-N$ concentration in effluent. This enhanced phosphate release in anaerobic contactor and resulted in high removal efficiencies of phophorus. Average removal efficiencies of $TCOD_{Cr}$ and $SCOD_{Cr}$ were 93.8% and 81.6%, respectively, while those of TKN and ${NH_4}^+-N$ were 80.9% and 74.4%, respectively. As for phosphorous treatment, the average removal efficiencies of TP and OP were 94.7% and 94.3%, respectively. Also, effect of operating temperature on nitrogen removal was examined. Average removal efficiency of TN was 65.8 % at $15^{\circ}C$ or below (at average temperature of $13.3^{\circ}C$), while that was 82.8% at $15^{\circ}C$ or above (at average temperature of $21.9^{\circ}C$).

Development of Optimal Nutrient Solution of Tomato(Lycopercicon esculentum Mill.) in a Closed Soilless Culture System (순환식 수경재배에 적합한 토마토 배양액 개발)

  • Yu, Sung-Oh;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.203-211
    • /
    • 2005
  • The experiment was conducted to investigate the nutrition absorption pattern in the growth stages and develope the optimal nutrient solution hydroponically grown the tomato in closed substrate culture system with the nutrient solution of National Horticultural Research Station in Japan into 1/2S, 1 S, and 2S. When plant was grown in 1/2 S, the growth and yield were high and the pH and EC in the rooting zone were stable. Suitable composition of nutrient solution for tomato was $NO_3-N$ 7.1, $PO_{4}$-P 2.1, K 4.0, Ca 3.1, Mg 1.2, and $SO_{4}-S\;1.2\;me{\cdot}L^{-1}$ in the early growth stage and $NO_3-N$ 6.5, $PO_4-P$ 2.3, K 3.4, Ca 3.1, Mg 1.1, and $SO_4-S\;1.1\;me{\cdot}L^{-1}$ in the late growth stage by calculating a rate of nutrient and water uptake. To estimate the suitability for the nutrient solution of tomato in a development of optimum nutrient solution of tomato developed by Wonkwang university in korea (WU), plant was grown in perlite substrate supplied with different solution and strengths(S) by research station for greenhouse vegetable and floricultuin in the Netherlands (Proefstation voor tuinbouw onder glas te Naaldwijk; PTG) of 1/2 S, 1 S and 2 S, respectively, The growth was good at the PTG and WU of 2 S in early growth stage, and at the WU 2S in late growth stage. The highest yield of tomato obtained in the WU of 2 S, although blossom-end rot was appeared in all treatments. pH and EC in root zone of WU of 2 S were stable during the early and late growth stage. Therefore when plant was grown in WU of 2 S, N and P content in the nutrient solution need to low, according N and P content of their leaves were high in WU of 2 S.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Seasonal Dynamis and Pollution Status of the Water Quality in the Kum River Reservoir (금강 하구호에서 수질의 계절변동과 오염도)

  • Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.251-259
    • /
    • 2000
  • Monthly variations of physico-chemical and biological parameter were determined in near the Kum River mouth at lower discharge period from January 1998 to September 1999. The characteristics of water quality was showed hypertrophic with average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a and transparency are 3.9 mg N/l, $160\;{\mu}g/l$, $73\;{\mu}g/l$ and 0.8 m, respectively. Among a nitrogen component, inorganic and organic nitrogen comprised 34% and 66% of TN, $NH_4$ and $NO_3$ comprised 30% and 70% of inorganic nitrogen respectively. SRP concentration comprised below 9% of TP. TN/TP and DIN/SRP ratio in winter were higher than in summer. SRSi fluctuation was very wide as ranged from 0 to 3.0 mg Si/l and the highest after flood event in summer. Long-term depleted pattern of Si was observed, that is considered to be important nutrient for algal growth. Chlorophyll-a concentration was very high as $113\;{\mu}g/l$, $162\;{\mu}g/l$ in winter and summer respectively, which persisent bloomed diatom Stephanodiscus and blue-green algae Microcystis. In consequence, water quality management of these periods are considered very important.

  • PDF

Effect of Saline Concentrations on Biological Nitrification in Batch Reactor

  • Lee, Young Joon;Nguyen, Viet Hoang;Nguyen, Hong Khanh;Pham, Tuan Linh;Kim, Gi Youn
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This study was carried out on 4 batch reactors to determine the specific ammonium oxidizing rate (SAOR), specific nitrate forming rate (SNFR) and inhibitory degree of nitrifying activities with saline concentrations. Under salt free condition ammonia was consumed during the reaction period within 200 min. When the salt level increased to 10, 20 and 30 g $NaClL^{-1}$ in reactor, ammonia depletion took 250, 300 and above 350 min, respectively. During concentration above 10 g $NaClL^{-1}$, there was nitrite accumulation. Also, at 30 g $NaClL^{-1}$ ammonia did not depleted and $NO_2{^-}$-N accumulated until the final reaction. Nitrate formation rates decreased with increasing salt concentration. SAOR and SNFR showed a decreasing trend as salinity concentrations were increased. The SAOR was reduced from 0.2 to 0.08 mg $NH_4{^+}$-N $g^{-1}VSS\;day^{-1}$ as the salt concentration increased from 0 to 30 g $NaClL^{-1}$. Similarly, the SNFR decreased from 0.26 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline free to 0.1 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline 30 g L-1. A severe inhibition of nitrifiers activity was observed at increased salt concentrations. The inhibition ratio of specific ammonium oxidation rates were 17, 47 and 60% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. The inhibition ratio of specific nitrate forming rates also were inhibited 30, 53 and 62% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. As the salinity concentrations increased from 0 to 30 mg $NaClL^{-1}$, the average MLSS concentration increased from 1,245 to 1,735 $mgL^{-1}$. The SS concentration of supernatant in reactor which settled about 30 minutes was not severely difference between concentration of salt free reactor and one of those high salt contained reactors.

Changes in Chemical Properties and Effect on Germination of Radish Seed from Aeration of Co-digestate Fertilizers (통합 혐기소화액별 폭기처리에 따른 화학적 성분 변화와 무의 발아효과)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.508-517
    • /
    • 2020
  • This study aimed to determine the minimum period of aeration treatment of co-digestate to develop it as liquid fertilizer and the chemical changes that occur in the aerobic liquefying process. The co-digestates were divided into three types depending on their additives: swine slurry anaerobic digestate (SS AD), swine slurry 70% + cow slurry 30% anaerobic digestate (SS + CS AD), and swine slurry 70% + apple pomace 30% anaerobic digestate (SS + AP AD). The pH of all co-digestates increased rapidly after 3 days of aerobic treatment, but had slightly decreased in SS AD after 9 days and in SS + CS AD and SS + AP AD after 15 days. All co-digestates showed a strongly reduced pH between 27 and 36 days of aeration treatment. SS AD had lower pH value, dissolved oxygen (DO), NH4-N, and NO3-N content under aerobic conditions than other co-digestates. To assess the fully decomposed liquid fertilizer, a germination test was performed on the undiluted and diluted co-digestate using the liquid fertilizer germination index (LFGI) method. The relative germination ratio, relative root elongation, and germination index of SS AD were higher than those of the others. When the LFGI method was used for the germination test, all co-digestates showed an appropriate germination index of 70 after 60 days of aeration treatment. Thus, we suggest that the minimum period of aeration treatment for co-digestates might be 60 days to develop the fully decomposed liquid fertilizer.