• Title/Summary/Keyword: $In_2Se_3$ phase

Search Result 263, Processing Time 0.027 seconds

Characteristics of the Polarization Dependence Holographic Diffraction Efficiency using the $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ Multi-Layer ($MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ 다층박막에서 편광상태에 따른 회절효율 특성)

  • Lee, Jung-Tae;Yeo, Cheol-Ho;Shin, Kyung;Lee, Ki-Nam;Kim, Jong-Bin;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.127-130
    • /
    • 2003
  • We have carried out two-beam interference experiment to form holographic grating on amorphous $As_{40}Ge_{10}Se_{15}S_{35}$ single-laver, $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ muliti-layer. In this study holographic grating formed using He-Ne laser(632.8nm) under different polarization state(intensity, phase polarization holography). The diffraction efficiency was obtained by first order intensity. The maximum diffraction efficiency of $As_{40}Ge_{10}Se_{15}S_{35}$ single-laver was 0.8% and The maximum diffraction efficiency of $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ multi-layer(multi-layer I, multi-layer II) were 1.4% and 3.1%.

  • PDF

Selenite Reduction to Elemental Selenium by Citrobacter Strain SE4-1 Isolated from a Stream Sediment (하천 퇴적토에서 분리한 Citrobacter strain SE4-1에 의한 아셀렌산염의 원소상 셀레늄으로의 환원)

  • Lee, Ji-Hoon;Cho, Ahyeon;Lee, Hyeri
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.146-149
    • /
    • 2018
  • BACKGROUND: Selenium is an essential element for all life forms but can be toxic above certain narrow levels. Prevalent forms of selenium in oxic environment are selenium oxyanions such as selenite and selenate, which may be contaminants in soils and water bodies. Bacterial reduction of more mobile selenium species (selenite or selenate) to less mobile elemental selenium may suggest a benign solution for alleviating toxicity and bioavailability of the selenium species. METHODS AND RESULTS: A facultative anaerobic bacterium, Citrobacter strain SE4-1 was isolated from the contaminated stream sediments and found to effectively reduce selenite to elemental selenium. Aqueous phase of selenite was analyzed by inductively couple plasma spectroscopy and the precipitated sphere-shaped elemental selenium was observed by transmission electron microscopy. CONCLUSION: The bacterial strain SE4-1 isolated in this study suggests a potential role in biogeochemical cycle of selenium by the selenite reduction in the stream environment, and potentials for biotechnological applications to reduceselenium concentrations in selenium-contaminated systems such as wastewater, soil, and groundwater.

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

A Study on Properties of CuInSe2 Thin Film by Annealing (CuInSe2 박막의 열처리에 의한 특성분석)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.162-165
    • /
    • 2011
  • In this paper, $CuInSe_2$ thin film was prepared by use of the co-evaporation method with the variation of the substrate temperature in the range of $100^{\circ}C$ to $400^{\circ}C$. The film was annealed at $300^{\circ}C$ for an hour in a vacuum chamber at $3{\times}10-4$ Pa. After annealing, the thin film prepared at the substrate temperatures of $100^{\circ}C$ and $200^{\circ}C$ was observed. The XRD (x-ray diffraction) pattern of sample prepared at $100^{\circ}C$ showed the single phase formation of $CuInSe_2$. However, at $200^{\circ}C$, there was no apparent difference in the XRD pattern except a variation in the intensity of the peak. As the annealing treatment of substrate improved the crystal structure of the film, it affected to the increase of an electron mobility, resulted in an increase in conductivity and a decrease in resistance. As a results, when the substrate temperature was at $200^{\circ}C$ and $300^{\circ}C$, the sheet resistance was 1.534 $\Omega/\Box$ and 1.554 $\Omega/\Box$, respectively, and the resistivity was $1.76{\times}10-6\;{\Omega}{\cdot}cm$ and $1.7210-6\;{\Omega}{\cdot}cm$, respectively. From the absorption spectrum measurements, there was no variation between the before and after annealing conductions. And it means that the annealing step does not affect the thickness of the thin film.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

The Influence of the Changing of Cyclic Frequency on the Corrosion Fatigue Fracture Behavior of the Dual Phase Steel in 3% NaCl Solution (3% NaCl 수용액중에서 복합조직강의 부식피로 파괴거동에 미치는 주파수변화의 영향)

  • O, Se-Uk;Sin, Gyu-Dong;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1995
  • Fatigue tests were carried out by a rotary bending testing machine of cantilever type. M.E.F.(ferrite encapsulated islands of martensite) materials were made by a series of heat treatment from a low carbon steel(SM 20 C). The fatigue tests were conducted at stress levels of 302 MPa and with frequencies of 25Hz, 2.5 Hz and 0.5 Hz in 3% NaCl solution. The fatigue strength increased with frequency got higher. The microcracks and corrosion pits were generated at the boundary between the matrix and the 2nd phase. The cracks generated by the corrosion pits were coalesced with the pits around the notch and became the initial crack. The $N_i/N_f$ ratio increased as the frequency and stress level decreased. The interference phenomenon increased with stress level and frequency gots higher. The crack propagation rate was delayed as the stress level lowers and the frequency gets higher, however, the range of the stress intensity factor depended only on a stress level.

  • PDF

Long-term simultaneous monitoring observations of SiO and H2O masers toward Mira variable WX Serpentis

  • Lim, Jang Ho;Kim, Jaeheon;Son, Seong Min;Suh, Kyung-Won;Cho, Se-Hyung;Yang, Haneul;Yoon, Dong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2021
  • We carried out simultaneous monitoring observations of five maser lines, H2O (22 GHz), SiO 𝝊 =1, 2, J =1-0 (43.1, 42.8 GHz), and SiO 𝝊 =1, J=2-1, J =3-2 (86.2, 129.3 GHz), toward the Mira variable star WX Serpentis with the 21-m antennas of the Korean VLBI Network (KVN) in 2009-2021 (~12 years). Most spectra of the H2O maser are well separated into two parts of two blue- and one redshifted features within ± 10 km s-1 of the stellar velocity. All detected SiO masers are generally concentrated within ± 5 km s-1 of the stellar velocity, and sometimes appear split into two components. Overall, the profiles of SiO and H2O masers detected in WX Serpentis illustrate typical characteristics of the Mira variable. In addition, flux variations of both SiO and H2O masers are well correlated with the optical light curve of the central star, showing a phase lag of ~ 0.1 for SiO masers and ~ 0.2 for H2O maser. This phenomenon is considered to be the direct effect of propagating shock waves generated by the stellar pulsation, because SiO and H2O masers are sequentially distributed at different positions with respect to the central star. In addition, we analyzed long-term trends and characteristics of maser velocities, maser ratio, and the velocity extents (the full width at zero power; FWZP). We also investigated a spectral energy distribution (SED) ranging from 1.2 to 240 ㎛ obtained using several infrared data: 2MASS, WISE, IRAS, ISO, COBE DIBRE, RAFGL, and AKARI (IRC and FIS). From the IRAS LRS and ISO SWS spectra of this star, we identified 9.7 and 12 ㎛ silicate emission features consistent with the SE6 spectrum model, corresponding to the typical AGB phase.

  • PDF

Nitrogen을 도핑시킨 Ge-Sb-Te 박막의 광전자 및 광흡수 분광학 연구

  • Sin, Hyeon-Jun;Jeong, Min-Cheol;Kim, Min-Gyu;Lee, Yeong-Mi;Kim, Gi-Hong;Jeong, Jae-Gwan;Song, Se-An;Sun, Zhimei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.186-186
    • /
    • 2013
  • Nitrogen doped Ge-Sb-Te (N-GST) thin films for phase change random access memory (PRAM) applications were investigated by synchrotron-radiation-based x-ray photoelectron spectroscopy and absorption spectroscopy. Nitrogen doping in GST resulted in more favorable N atoms' bonding with Ge atoms rather than with Sb and Te atoms [1,2], which explains the higher phase change transition temperature than that of undoped Ge-Sb-Te thin film. Surprisingly, it was noticed that N atoms also existed in the form of molecular nitrogen, $N_2$, which is detrimental to the stability of the GST performance [3]. N-doped GST experimental features were also supported by ab-initio molecular dynamic calculations [2]. References [1] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, and H. J. Shin, K. H. Kim, S. A. Song, H. S. Jeong, C. H. Ko, and M. Han, "Ge nitride formation in N-doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 91, 083514 (2007). [2] Zhimei Sun, Jian Zhou, Hyun-Joon Shin, Andreas Blomqvist, and Rajeev Ahuja, "Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5", Appl. Phys. Lett. 93, 241908 (2008). [3] Kihong Kim, Ju-Chul Park, Jae-Gwan Chung, and Se Ahn Song, Min-Cherl Jung, Young Mi Lee, Hyun-Joon Shin, Bongjin Kuh, Yongho Ha, Jin-Seo Noh, "Observation of molecular nitrogen in N-doped Ge2Sb2Te5", Appl. Phys. Lett. 89, 243520 (2006).

  • PDF

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan;Zhang, Jingtong;Liu, Haijun;Wang, Zhaojie
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850141.1-1850141.11
    • /
    • 2018
  • Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.

Evolution pathway of CZTSe nanoparticles synthesized by microwave-assisted chemical synthesis

  • Reyes, Odin;Sanchez, Monica F.;Pal, Mou;Llorca, Jordi;Sebastian, P.J.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2017
  • In this study we present the reaction mechanism of $Cu_2ZnSnSe_4$ (CZTSe) nanoparticles synthesized by microwave-assisted chemical synthesis. We performed reactions every 10 minutes in order to identify different phases during quaternary CZTSe formation. The powder samples were analyzed by x-ray diffraction (XRD), Raman spectroscopy, energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that in the first minutes copper phases are predominant, then copper and tin secondary phases react to form ternary phase. The quaternary phase is formed at 50 minutes while ternary and secondary phases are consumed. At 60 minutes pure quaternary CZTSe phase is present. After 60 minutes the quaternary phase decomposes in the previous ternary and secondary phases, which indicates that 60 minutes is ideal reaction time. The EDS analysis of pure quaternary nanocrystals (CZTSe) showed stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. In conclusion, the evolution pathway of CZTSe synthesized by this novel method is similar to other synthesis methods reported before. Nanoparticles synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.