References
- Ahmadi, M., Pramana, S.S., Xi, L., Boothroyd, C., Lam, Y.M. and Mhaisalkar, S. (2012), Evolution pathway of CIGSe nanocrystals for solar cell applications", J. Phys. Chem. C, 116(14), 8202-8209. https://doi.org/10.1021/jp300187r
- Bhattacharya, R.N., Batchelor, W., Granata, J.E., Hasoon, F., Wiesner, H., Ramanathan, K. and Noufi, R.N. (1998), "CuIn 1- x Ga x Se 2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors", Solar Energy Mater. Solar Cells, 55(1), 83-94. https://doi.org/10.1016/S0927-0248(98)00049-X
-
Brammertz, G., Buffiere, M., Oueslati, S., ElAnzeery, H., Messaoud, K.B., Sahayaraj, S. and Poortmans, J. (2013), "Characterization of defects in 9.7% efficient
$Cu_2ZnSnSe_4$ -CdS-ZnO solar cells", Appl. Phys. Lett., 103(16), 163904. https://doi.org/10.1063/1.4826448 -
Du, Y.F., Zhou, W.H., Zhou, Y.L., Li, P.W., Fan, J.Q., He, J.J. and Wu, S.X. (2012), "Solvothermal synthesis and characterization of quaternary
$Cu_2ZnSnSe_4$ particles", Mater. Sci. Semicon. Process., 15(2), 214-217. https://doi.org/10.1016/j.mssp.2011.09.005 -
Flynn, B., Wang, W., Chang, C.H. and Herman, G.S. (2012), "Microwave assisted synthesis of
$Cu_2ZnSnS_4$ colloidal nanoparticle inks", Physica Status Solidi (a), 209(11), 2186-2194. https://doi.org/10.1002/pssa.201127734 -
Ganchev, M., Iljina, J., Kaupmees, L., Raadik, T., Volobujeva, O., Mere, A. and Mellikov, E. (2011), "Phase composition of selenized
$Cu_2ZnSnSe_4$ thin films determined by X-ray diffraction and Raman spectroscopy", Thin Solid Films, 519(21), 7394-7398. https://doi.org/10.1016/j.tsf.2011.01.388 -
Gardner, J.S., Shurdha, E., Wang, C., Lau, L.D., Rodriguez, R.G. and Pak, J.J. (2008), "Rapid synthesis and size control of
$CuInS_2$ semi-conductor nanoparticles using microwave irradiation", J. Nanopart. Res., 10(4), 633-641. https://doi.org/10.1007/s11051-007-9294-7 -
Grisaru, H., Palchik, O., Gedanken, A., Palchik, V., Slifkin, M.A. and Weiss, A.M. (2003), "Microwaveassisted polyol synthesis of
$CuInTe_2$ and$CuInSe_2$ nanoparticles", Inorganic Chem., 42(22), 7148-7155. https://doi.org/10.1021/ic0342853 - Holubova, J., Cernosek, Z. and Cernoskova, E. (2009), "The selenium based chalcogenide glasses with low content of As and Sb: DSC, StepScan DSC and Raman spectroscopy study", J. Non-Crystal. Solids, 355(37), 2050-2053. https://doi.org/10.1016/j.jnoncrysol.2009.05.067
- Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M. (2016), "Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%", Physica Status Solidi (RRL)-Rapid Res. Lett., 10(8), 583-586. https://doi.org/10.1002/pssr.201600199
-
Jeon, M., Tanaka, Y., Shimizu, T. and Shingubara, S. (2011), "Formation and characterization of single-step electrodeposited
$Cu_2ZnSnS_4$ thin films: Effect of complexing agent volume", Energy Procedia, 10, 255-260. https://doi.org/10.1016/j.egypro.2011.10.187 -
Lee, P.Y., Shei, S.C. and Chang, S.J. (2013), "Evolution pathways for the formation of Nano-
$Cu_2ZnSnSe_4$ absorber materials via elemental sources and isophorondiamine chelation", J. Alloys Compounds, 574, 27-32. https://doi.org/10.1016/j.jallcom.2013.03.254 - Lee, P.Y., Chang, S.P., Hsu, E.H. and Chang, S.J. (2014), "Synthesis of CZTSe nanoink via a facile one-pot heating route based on polyetheramine chelation", Solar Energy Mater. Solar Cells, 128, 156-165. https://doi.org/10.1016/j.solmat.2014.05.005
-
Li, Z.Q., Shi, J.H., Liu, Q.Q., Chen, Y.W., Sun, Z., Yang, Z. and Huang, S.M. (2011), "Large-scale growth of
$Cu_2ZnSnSe_4$ and$Cu_2ZnSnSe_4$ /$Cu_2ZnSnS_4$ core/shell nanowires", Nanotechnology, 22(26), 265615. https://doi.org/10.1088/0957-4484/22/26/265615 -
Liu, W., Wu, M., Yan, L., Zhou, R., Si, S., Zhang, S. and Zhang, Q. (2011), "Noninjection synthesis and characterization of
$Cu_2ZnSnSe_4$ nanocrystals in triethanolamine reaction media", Mater. Lett., 65(17), 2554-2557. https://doi.org/10.1016/j.matlet.2011.04.106 - Liu, T., Jin, Z., Li, J., Wang, J., Wang, D., Lai, J. and Du, H. (2013), "Monodispersed octahedral-shaped pyrite CuSe 2 particles by polyol solution chemical synthesis", CrystEngComm, 15(44), 8903-8906. https://doi.org/10.1039/c3ce41500g
- Lu, J., Xie, Y., Xu, F. and Zhu, L. (2002), "Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals", J. Mater. Chem., 12(9), 2755-2761. https://doi.org/10.1039/B204092A
- Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K. and Guha, S. (2011), "The path towards a highperformance solution-processed kesterite solar cell", Solar Energy Mater. Solar Cells, 95(6), 1421-1436. https://doi.org/10.1016/j.solmat.2010.11.028
- Panda, A.B., Glaspell, G. and El-Shall, M.S. (2006), "Microwave synthesis of highly aligned ultra-narrow semiconductor rods and wires", J. Am. Chem. Soc., 128(9), 2790-2791. https://doi.org/10.1021/ja058148b
- Qian, H., Qiu, X., Li, L. and Ren, J. (2006), "Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe (S) alloyed quantum dots", J. Phys. Chem. B, 110(18), 9034-9040. https://doi.org/10.1021/jp0539324
-
Qin-Miao, C., Zhen-Qing, L., Yi, N., Shu-Yi, C. and Xiao-Ming, D. (2012), "Doctor-bladed
$Cu_2ZnSnS_4$ light absorption layer for low-cost solar cell application", Chinese Physics B, 21(3), 038401. https://doi.org/10.1088/1674-1056/21/3/038401 -
Quiroz, H.P., Sena, N.J. and Dussan, A. (2014), "Microstructural and morphological properties of nanocrystalline
$Cu_2ZnSnSe_4$ thin films: Identification new phase on structure", J. Phys.: Conference Series, 480(1), p. 012002. https://doi.org/10.1088/1742-6596/480/1/012002 - Rath, T., Haas, W., Pein, A., Saf, R., Maier, E., Kunert, B. and Trimmel, G. (2012), "Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition", Solar Energy Materials and Solar Cells, 101, 87-94. https://doi.org/10.1016/j.solmat.2012.02.025
- Roe, F.J.C., Grant, G.A. and Millican, D.M. (1967), "Carcinogenicity of hydrazine and 1, 1-dimethylhydrazine for mouse lung", Nature, 216(5113), 375-376. https://doi.org/10.1038/216375a0
-
Salome, P.M., Fernandes, P.A., Leitao, J.P., Sousa, M.G., Teixeira, J.P. and da Cunha, A.F. (2014), "Secondary crystalline phases identification in
$Cu_2ZnSnSe_4$ thin films: Contributions from Raman scattering and photoluminescence", J. Mater. Sci., 49(21), 7425-7436. https://doi.org/10.1007/s10853-014-8446-2 -
Shao, L., Zhang, J., Zou, C. and Xie, W. (2012), "
$Cu_2ZnSnSe_4$ thin films by selenization of simultaneously evaporated Sn-Zn-Cu metallic lays for photovoltaic applications", Phys. Procedia, 32, 640-644. https://doi.org/10.1016/j.phpro.2012.03.612 - Shei, S.C. and Lee, P.Y. (2013), "Synthesis of CZTSe nanocrystal prepared by a facile route in coordinating solvent from elemental sources", Nanotechnology, IEEE Transactions on, 12(4), 532-538. https://doi.org/10.1109/TNANO.2013.2255623
- Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells", J. Appl. Phys., 32(3), 510-519. https://doi.org/10.1063/1.1736034
- Shyju, T.S., Anandhi, S., Suriakarthick, R., Gopalakrishnan, R. and Kuppusami, P. (2015), "Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications", J. Solid State Chem., 227, 165-177. https://doi.org/10.1016/j.jssc.2015.03.033
- Todorov, T.K., Reuter, K.B. and Mitzi, D.B. (2010), "High-efficiency solar cell with earth-abundant liquid processed absorber", Adv. Mater., 22(20), 156-159. https://doi.org/10.1002/adma.200904155
- Vallejo, O.R., Sanchez, M., Pal, M., Espinal, R., Llorca, J. and Sebastian, P.J. (2016), "Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis", Mater. Res. Express, 3(12), 125017. https://doi.org/10.1088/2053-1591/3/12/125017
- Wang, Y., Ai, X., Miller, D., Rice, P., Topuria, T., Krupp, L. and Song, Q. (2012), "Two-phase microwaveassisted synthesis of Cu 2 S nanocrystals", CrystEngComm, 14(22), 7560-7562. https://doi.org/10.1039/c2ce25809a
- Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014), "Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency", Adv. Energy Mater., 4(7), 1301465. https://doi.org/10.1002/aenm.201301465
-
Wangperawong, A., King, J.S., Herron, S.M., Tran, B.P., Pangan-Okimoto, K. and Bent, S.F. (2011), "Aqueous bath process for deposition of
$Cu_2ZnSnS_4$ photovoltaic absorbers", Thin Solid Films, 519(8), 2488-2492. https://doi.org/10.1016/j.tsf.2010.11.040 - Washington Ii, A.L. and Strouse, G.F. (2008), "Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes", J. Am. Chem. Soc., 130(28), 8916-8922. https://doi.org/10.1021/ja711115r
-
Wibowo, R.A., Jung, W.H. and Kim, K.H. (2010), "Synthesis of
$Cu_2ZnSnSe_4$ compound powders by solid state reaction using elemental powders", J. Phys. Chem. Solids, 71(12), 1702-1706. https://doi.org/10.1016/j.jpcs.2010.08.012 -
Zhou, J., You, L., Yi, Q. and Ye, Z. (2013), "One-step synthesis of
$Cu_2ZnSnSe_4$ microparticles via a facile solution route in triethylenetetramine reaction media and its characterization", Mater. Lett., 107, 225-227. https://doi.org/10.1016/j.matlet.2013.05.109 - Zhou, B., Xia, D. and Wang, Y. (2015), "Phase-selective synthesis and formation mechanism of CZTS nanocrystals", RSC Advances, 5(86), 70117-70126. https://doi.org/10.1039/C5RA11890E
-
Zoppi, G., Forbes, I., Miles, R.W., Dale, P.J., Scragg, J.J. and Peter, L.M. (2009), "
$Cu_2ZnSnSe_4$ thin film solar cells produced by selenisation of magnetron sputtered precursors", Prog. Photovoltaics: Res. Appl., 17(5), 315-319. https://doi.org/10.1002/pip.886
Cited by
- Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.253