DOI QR코드

DOI QR Code

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan (College of Science, State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China University of Petroleum) ;
  • Zhang, Jingtong (College of Science, State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China University of Petroleum) ;
  • Liu, Haijun (College of Science, State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China University of Petroleum) ;
  • Wang, Zhaojie (College of Science, State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering China University of Petroleum)
  • Received : 2018.07.17
  • Accepted : 2018.10.30
  • Published : 2018.12.31

Abstract

Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Shandong Natural Science Foundation, Central Universities

References

  1. F. Zhang, C. Xia, J. Zhu, B. Ahmed, H. Liang, D. B. Velusamy, U. Schwingenschlogl and H. N. Alshareef, Adv. Eng. Mater. 6, 1601188 (2016). https://doi.org/10.1002/aenm.201601188
  2. Q. Li, Q. Wei, W. Zuo, L. Huang, W. Luo, Q. An, V. O. Pelenovich, L. Mai and Q. Zhang, Chem. Sci. 8, 160 (2017). https://doi.org/10.1039/C6SC02716D
  3. S. Wu, W. Wang, M. Li, L. Cao, F. Lyu, M. Yang, Z. Wang, Y. Shi, B. Nan, S. Yu, Z. Sun, Y. Liu and Z. Lu, Nat. Commun. 7, 13318 (2016). https://doi.org/10.1038/ncomms13318
  4. W. Xiong, Z. Wang, J. Zhang, C. Shang, M. Yang, L. He and Z. Lu, Energy Storage Mater. 7, 229 (2017). https://doi.org/10.1016/j.ensm.2017.03.006
  5. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-gonzalez and T. Rojo, Energy Environ. Sci. 5, 5884 (2012). https://doi.org/10.1039/c2ee02781j
  6. L. Malavasi, C. A. J. Fisher and M. S. Islam, ChemInform 39, 4370 (2010).
  7. S. Das, S. Lau and L. Archer, J. Mater. Chem. A 2, 12623 (2014). https://doi.org/10.1039/C4TA02176B
  8. G. D. Park, J. S. Cho, J. K. Lee and Y. C. Kang, Sci. Rep. 6, 22432 (2016). https://doi.org/10.1038/srep22432
  9. H. Song, N. Li, H. Cui and C. Wang, Nano Energy 4, 81 (2014). https://doi.org/10.1016/j.nanoen.2013.12.017
  10. K. Hong, Q. Long, R. Zeng, Z. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. Fan, W. Zhang and Y. Huang, J. Mater. Chem. A 2, 12733 (2014). https://doi.org/10.1039/C4TA02068E
  11. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, Nano Lett. 12, 3783 (2012). https://doi.org/10.1021/nl3016957
  12. J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E. M. Lotfabad, B. C. Olsen and D. Mitlin, ACS Nano 7, 11004 (2013). https://doi.org/10.1021/nn404640c
  13. S. M. Oh, S. T. Myung, M. W. Jang, B. Scrosati, J. Hassoun and Y. K. Sun, Phys. Chem. Chem. Phys. 15, 3827 (2013). https://doi.org/10.1039/c3cp00070b
  14. M. He, K. Kravchyk, M. Walter and M. V. Kovalenko, Nano Lett. 14, 1255 (2014). https://doi.org/10.1021/nl404165c
  15. L. Ji, M. Gu, Y. Shao, X. Li, M. H. Engelhard, B. W. Arey, W. Wang, Z. Nie, J. Xiao, C. Wang, J. Zhang and J. Liu, Adv. Mater. 26, 2901 (2014). https://doi.org/10.1002/adma.201304962
  16. L. Ji, W. Zhou, V. Chabot, A. Yu and X. Xiao, ACS Appl. Mater. Interf. 7, 24895 (2015). https://doi.org/10.1021/acsami.5b08274
  17. J. S. Thorne, R. A. Dunlap and M. N. Obrovac, Electrochim. Acta 112, 133 (2013). https://doi.org/10.1016/j.electacta.2013.08.120
  18. Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu and M. Yan, Nano Energy 5, 60 (2014). https://doi.org/10.1016/j.nanoen.2014.02.002
  19. C. Deng, S. Zhang, Z. Dong and Y. Shang, Nano Energy 4, 49 (2014). https://doi.org/10.1016/j.nanoen.2013.12.014
  20. Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen, Angew. Chem. 53, 12794 (2014). https://doi.org/10.1002/anie.201407898
  21. J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A. C. Mignerey and C. Wang, ACS Appl. Mater. Interf. 7, 11476 (2015). https://doi.org/10.1021/acsami.5b02413
  22. Y. N. Ko, S. H. Choi, S. B. Park and Y. C. Kang, Nanoscale 6, 10511 (2014). https://doi.org/10.1039/C4NR02538E
  23. K. Zhang, Z. Hu, X. Liu, Z. Tao and J. Chen, Adv. Mater. 27, 3305 (2015). https://doi.org/10.1002/adma.201500196
  24. W. Yin, J. Yue, M. Cao, W. Liu, J. Ding, F. Ding, L. Sang and Z. Fu, J. Mater. Chem. A 3, 19027 (2015). https://doi.org/10.1039/C5TA04647E
  25. Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen and J. Chen, Energy Environ. Sci. 8, 1309 (2015). https://doi.org/10.1039/C4EE03759F
  26. S. Huang, Q. He, W. Chen, Q. Qiao, J. Zai and X. Qian, Chem. Eur. J. 21, 4085 (2015). https://doi.org/10.1002/chem.201406124
  27. C. Ji, F. Liu, L. Xu and S. Yang, J. Mater. Chem. A 5, 5568 (2017). https://doi.org/10.1039/C6TA11001K
  28. Y. Guan, Y. Feng, Y. Mu, H. Zhang and Y. Wang, Electrochim. Acta 247, 435 (2017). https://doi.org/10.1016/j.electacta.2017.07.039
  29. J. Xu, K. Jang, J. Lee, H. J. Kim, J. Jeong, J. G. Park and S. U. Son, Cryst. Growth Des. 11, 2707 (2011). https://doi.org/10.1021/cg2005562
  30. W. Shi, X. Zhang, G. Che, W. Fan and C. Liu, Chem. Eng. J. 215, 508 (2013).
  31. S. K. Park, J. K. Kim and Y. C. Kang, Chem. Eng. J. 334, 2440 (2018). https://doi.org/10.1016/j.cej.2017.12.014
  32. J. Li, X. Zhao and Z. Zhang, J. Colloid Interf. Sci. 498, 153 (2017). https://doi.org/10.1016/j.jcis.2017.03.056
  33. L. Liu, X. Yang, C. Lv, A. Zhu, X. Zhu, S. Guo, C. Chen and D. Yang, ACS Appl. Mater. Interf. 8, 7047 (2016). https://doi.org/10.1021/acsami.5b12427
  34. W. Chen, S. Qi, L. Guan, C. Liu, S. Cui, C. Shen and L. Mi, J. Mater. Chem. A 5, 5332 (2017). https://doi.org/10.1039/C7TA00114B
  35. Z. Zhang, X. Shi, X. Yang, Y. Fu, K. Zhang, Y. Lai and J. Li, ACS Appl. Mater. Interf. 8, 13849 (2016). https://doi.org/10.1021/acsami.5b12148
  36. K. Zhang, M. Park, L. Zhou, G. H. Lee, W. Li, Y. M. Kang and J. Chen, Adv. Funct. Mater. 26, 6728 (2016). https://doi.org/10.1002/adfm.201602608
  37. F. Zhao, S. Shen, L. Cheng, L. Ma, J. Zhou, H. Ye, N. Han, T. Wu, Y. Li and J. Lu, Nano Lett. 17, 4137 (2017). https://doi.org/10.1021/acs.nanolett.7b00915
  38. J. Jin, Y. Zheng, L. B. Kong, N. Srikanth, Q. Yan and K. Zhou, J. Mater. Chem. A 6, 15710 (2018). https://doi.org/10.1039/C8TA04425B
  39. R. Wu, D. P. Wang, X. Rui, B. Liu, K. Zhou, A. W. Law, Q. Yan, J. Wei and Z. Chen, Adv. Mater. 27, 3038 (2015). https://doi.org/10.1002/adma.201500783
  40. F. Zheng, Y. Yang and Q. Chen, Nat. Commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
  41. F. Zheng, G. Xia, Y. Yang and Q. Chen, Nanoscale 7, 9637 (2015). https://doi.org/10.1039/C5NR00528K
  42. J. Zhang, L. Yu and X. W. D. Lou, Nano Res. 10, 4298 (2017). https://doi.org/10.1007/s12274-016-1394-1
  43. P. Wang, J. Lang, D. Liu and X. Yan, Chem. Comm. 51, 11370 (2015). https://doi.org/10.1039/C5CC01703C