• Title/Summary/Keyword: $In_2S_3$ thin film

Search Result 839, Processing Time 0.023 seconds

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes

Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells (Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과)

  • Lee, In Jae;Jo, Eunae;Jang, Jun Sung;Lee, Byeong Hoon;Lee, Dong Min;Kang, Chang Hyun;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power (RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성)

  • Zhang, Ya Jun;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

Detection of Blood Agent Gas Using $SnO_2$ Thin Film Gas Sensor

  • Choi, Nak-Jin;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Lee, Duk-Dong;Bahn, Tae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.69-75
    • /
    • 2004
  • In this study, thin film gas sensor based on tin oxide was fabricated to examine its characteristics. Target gas is acetonitrile ($CH_3$CN) which is a blood simulant for the chemical warfare agent. Sensing materials are SnO$_2$ SnO$_2$/Pt, and Sn/Pt with thickness from 1000 to 3000 $\AA$. The sensor consists of a sensing electrode with inter-digit (IDT) type in front side and a heater in rear side. Resistance changes of sensing materials are monitored on real time basis using a data acquisition board with a 12-bit analog to digital converter. Sensitivities are measured at different operating temperatures also with different gas concentrations and film thickness. The high sensitivity is obtained for Sn (3000 $\AA$)/Pt (30 $\AA$) at 30$0^{\circ}C$ for 3 ppm. Response and recovery times were about 40 and 160 s, respectively. Repetition measurements showed very good results with $\pm$3% in full scale range.

Structural, Electrical, and Optical Properties of AZO Thin Films Subjected to Rapid Thermal Annealing Temperature (급속 열처리 온도 변화에 따른 AZO 박막의 구조, 전기 및 광학적 특성)

  • Jung, Jae-Yong;Cho, Shin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.280-286
    • /
    • 2010
  • We have investigated the influence of rapid thermal annealing (RTA) temperature on properties of Al-doped zinc oxide (AZO) thin films deposited on glass substrate by using radio-frequency magnetron sputtering. The RTA is performed in a nitrogen ambient in the temperature range from 300 to $600^{\circ}C$ for 1 minute in a rapid thermal annealer after growing the AZO thin films. The crystallographic structure and the surface morphology of AZO thin film are measured by using X-ray diffraction, and atomic force microscopy and scanning electron microscopy, respectively. The optical transmittance of the deposited thin films is examined in the wavelength range of 300-1100 nm, where the average transmittance is above the 90% in the visible and near-infrared regions. The optical bandgap is calculated from the Tauc's model, and it shows a significant dependence on the RTA temperature. As for the electrical properties of the thin films, the AZO thin film annealed at $400^{\circ}C$ shows the lowest electrical resistivity of $8.6{\times}10^{-3}{\Omega}cm$ and the Hall mobility of $11.3cm^2$/V-sec. These results suggest that the RTA temperature is an important parameter to influence on the structural, electrical, and optical properties of AZO thin films.

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.170-173
    • /
    • 2010
  • Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Effects $H_2$ carrier gas on the mechanical properties of poly 3C-SiC thin films ($H_2$ 캐리어가스가 다결정 3C-SiC 박막의 기계적 특성에 미치는 영향)

  • Han, Ki-Bong;Chung, Gwiy-Sang;Hong, Hoang Sy
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.89-90
    • /
    • 2007
  • This paper presents the mechanical properties of 3C-SiC thin film according to 0, 7, and 10% carrier gas $(H_2)$ concentrations using Nano Indentation. When carrier gas $(H_2)$ concentration was 10%, it has been proved that the mechanical properties, elastic modulus and hardness, of 3C-SiC are the best of them. In the case of 10% carrier gas concentration, Young's modulus and Hardness were obtained as 367 GPa and 36 GPa, respectively. When the surface roughness according to $H_2$ concentrations was investigated by AFM (atomic force microscope), when $H_2$ concentration was 10%, the roughness of 3C-SiC thin was 9.92 nm, which is also the best of them. Therefore, in order to apply poly 3C-SiC thin film to MEMS applications, $H_2$ concentration's rate should increase to obtain better mechanical properties and surface roughness.

  • PDF

The Contact Characteristics of Ferroelectrics Thin Film and a-Si:H Thin Film (강유전성 박막의 형성 및 수소화 된 비정질실리콘과의 접합 특성)

  • 허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.501-504
    • /
    • 2003
  • In this paper, for enhancement of property on a-Si:H TFTs We measure interface characteristics of ferroelectrics thin film and a-Si:H thin film. First, SrTiO$_3$ thin film is deposited bye-beam evaporation. Deposited films are annealed for 1 hour in N2 ambient at 150$^{\circ}C$ ∼ 600$^{\circ}C$. Dielectric characteristics of deposited SrTiO$_3$ films are very good because dielectric constant shows 50∼100 and breakdown electric field are 1∼1.5MV/cm. a-SiN:H,a-Si:H(n-type a-Si:H) are deposited onto SrTiO$_3$ film to make MFNS(Metal/ferroelectric/a-SiN:H/a-Si:H) by PECVD. After the C-V measurement for interface characteristics, MFNS structure shows no difference with MNS(Metal/a-SiN:H/a-Si:H) structure in C-V characteristics but the insulator capacitance value of MFNS structure is much higher than the MNS because of high dielectric constant of ferroelectrics.

  • PDF

Electrical properties of ZnO transparent conducting film fabricated by the sputtering method (스퍼터링법에 의한 ZnO 투명전도막의 제작과 전기적 특성)

  • Jeong, Woon-Jo;Cho, Jae-Cheol;Jeong, Yong-Kun;Yoo, Yong-Tek
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • ZnO thin film had been deposited on the glass by sputtering method, and investigated by optical and electrical properties. When the rf power was 180W and sputtering pressure was $1{\times}10^{-3}$Torr at room temperature, thin lam deposited had strongly oriented c-axis and the lowest resistivity($1{\times}10^{-4}{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were $6.27{\times}10^{20}cm^{-3}$ and $22.04cm^{2}/V{\cdot}s$, respectively. Transmittance of ZnO thin film in visible range was above 90%, and this thin film cut of the ultraviolet range below 320nm and the infrared range above 850nm. And after annealing in hydrogen atmosphere, the resistivity of ZnO thin film was somewhat decreased, while obtained as stable state.

  • PDF

Electrical Properties of the (Ba,Sr)$TiO_3$Thin Films Prepared by Sol-Gel Method (Sol-Gel법으로 제조한 (Ba,Sr)$TiO_3$박막의 전기적 특성)

  • 이영희;이문기;정장호;류기원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.592-597
    • /
    • 2000
  • In this study (B $a_{0.5}$/S $r_{0.5}$)Ti $O_3$[BST(50/50)] ceramic thin films were prepared by the Sol-Gel method BST(50/50) stock solution was made and spin-coated on the Indium Tin Oxide(ITO)/glass substrate at 4000 rpm for 30 seconds. The coated films were dried at 35$0^{\circ}C$ for 10 minutes and annealed at 650~75$0^{\circ}C$ for 1 hour. The microstructural properties of the BST(50/50) thin film were studied by the XRD and AFM. The ferroelectric perovskite phase was formed at the annealing condition of 75$0^{\circ}C$ for 1 hour. Dielectric constant and loss of this thin were 370, 3.7% at room temperature respectively. The polarization switching voltage showed the good value of 3V. The leakage current density of the BST(50/50) thin film was 10$^{-7A}$c $m^2$with applied voltage of 1.5V. BST(50/50) thin film capacitors having good dielectric and electrical properties are expecting for the application to the dielectric material of DRAM.RAM.M.

  • PDF