DOI QR코드

DOI QR Code

Photoluminescence of Nanocrystalline CdS Thin Films Prepared by Chemical Bath Deposition

  • Park, Wug-Dong (Department of Railroad Drive and Control, Dongyang University)
  • Received : 2010.06.15
  • Accepted : 2010.07.14
  • Published : 2010.08.25

Abstract

Nanocrystalline cadmium sulfide (CdS) thin films were prepared using chemical bath deposition in a solution bath containing $CdSO_4$, $SC(NH_2)_2$, and $NH_4OH$. The CdS thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). The as-deposited CdS thin film prepared at $80^{\circ}C$ for 60 min had a cubic phase with homogeneous and small grains. In the PL spectrum of the 2,900 A-thick CdS thin film, the broad red band around 1.7 eV and the broad high-energy band around 2.7 eV are attributed to the S vacancy and the band-to-band transition, respectively. As the deposition time increases to over 90 min, the PL intensity from the band-to-band transition significantly increases. The temperature dependence of the PL intensity for the CdS thin films was studied from 16 to 300 K. The $E_A$ and $E_B$ activation energies are obtained by fitting the temperature dependence of the PL intensity. The $E_A$ and $E_B$ are caused by the deep trap and shallow surface traps, respectively. From the FTIR analysis of the CdS thin films, a broad absorption band of the OH stretching vibration in the range $3,000-3,600\;cm^{-1}$ and the peak of the CN stretching vibration at $2,000\;cm^{-1}$ were found.

Keywords

References

  1. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, and V. Canevari, Sol. Energy Mater. Sol. Cells 58, 209 (1999) [DOI: 10.1016/S0927-0248(98)00204-9].
  2. A. Romeo, D. L. Batzner, H. Zogg, C. Vignali, and A. N. Tiwari, Sol. Energy Mater. Sol. Cells 67, 311 (2001) [DOI: 10.1016/S0927-0248(00)00297-X].
  3. P. K. Vidyadharan Pillai and K. P. Vijayakumar, Sol. Energy Mater. Sol. Cells 51, 47 (1998) [DOI: 10.1016/S0927-0248(97)00207-9].
  4. S. A. Al Kuhaimi, Sol. Energy Mater. Sol. Cells 52, 69 (1998) [DOI: 10.1016/S0927-0248(97)00272-9].
  5. P. Taneja, P. Vasa, and P. Ayyub, Mater. Lett. 54, 343 (2002) [DOI: 10.1016/S0167-577X(01)00590-0].
  6. A. Palafox, G. Romero-Paredes, A. Maldonado, R. Asomoza, D. R. Acosta, and J. Palacios-Gomez, Sol. Energy Mater. Sol. Cells 55, 31 (1998) [DOI: 10.1016/S0927-0248(98)00044-0].
  7. J. N. Ximello-Quiebras, G. Contreras-Puente, J. Aguilar-Hernandez, G. Santana-Rodriguez, and A. Arias-Carbajal Readigos, Sol. Energy Mater. Sol. Cells 82, 263 (2004) [DOI: 10.1016/j.solmat.2004.01.023].
  8. R. Zhai, S. Wang, H. Xu, H. Wang, and H. Yan, Mater. Lett. 59, 1497 (2005) [DOI: 10.1016/j.matlet.2005.01.008].
  9. D. S. Boyle, A. Bayer, M. R. Heinrich, O. Robbe, and P. O’Brien, Thin Solid Films 361-362, 150 (2000) [DOI: 10.1016/S0040-6090(99)00789-0].
  10. P. Raji, C. Sanjeeviraja, and K. Ramachandran, Cryst. Res. Technol. 39, 617 (2004) [DOI: 10.1002/crat.200310233].
  11. L. Wenyi, C. Xun, C. Qiulong, and Z. Zhiben, Mater. Lett. 59, 1 (2005) [DOI: 10.1016/j.matlet.2004.04.008].
  12. A. G. Shikalgar and S. H. Pawar, Philos. Mag. B 40, 139 (1979). https://doi.org/10.1080/13642817908246365
  13. S. Prabahar and M. Dhanam, J. Crystal Growth 285, 41 (2005) [DOI: 10.1016/j.jcrysgro.2005.08.008].
  14. C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, M. Muller, K. Diesner, and H. Tributsch, Thin Solid Films 330, 70 (1998) [DOI: 10.1016/S0040-6090(98)00500-8].
  15. P. P. Hankare, A. D. Jadhav, V. M. Bhuse, A. S. Khomane, and K. M. Garadkar, Mater. Chem. Phys. 80, 102 (2003) [DOI: 10.1016/S0254-0584(02)00344-9].
  16. M. Sridharan, S. K. Narayandass, D. Mangalaraj, and H. C. Lee, Cryst. Res. Technol. 37, 964 (2002) [DOI: 10.1002/1521-4079(200209)37:9<964::AID-CRAT964>3.0.CO;2-R].
  17. J. Aguilar-Hernandez, J. Sastre-Hernandez, N. Ximello-Quiebras, R. Mendoza-Perez, O. Vigil-Galan, G. Contreras-Puente, and M. Cardenas-Garcia, Thin Solid Films 511-512, 143 (2006) [DOI: 10.1016/j.tsf.2005.11.082].
  18. J. Zhao, K. Dou, Y. Chen, C. Jin, L. Sun, S. Huang, J. Yu, W. Xiang, and Z. Ding, J. Luminescence 66-67, 332 (1996) [DOI: 10.1016/0022-2313(95)00164-6].
  19. B. Malinowska, M. Rakib, and G. Durand, Sol. Energy Mater. Sol. Cells 86, 399 (2005) [DOI: 10.1016/j.solmat.2004.08.004].
  20. R. N. Bhattacharya, K. Ramanathan, L. Gedvilas, and B. Keyes, J. Phys. Chem. Solid 66, 1862 (2005) [DOI: 10.1016/j.jpcs.2005.09.006].

Cited by

  1. Chemical bath deposition of CdS highly-textured, columnar films vol.519, pp.19, 2011, https://doi.org/10.1016/j.tsf.2011.04.096
  2. Improved electrical stability of CdS thin film transistors through hydrogen-based thermal treatments vol.29, pp.8, 2014, https://doi.org/10.1088/0268-1242/29/8/085001
  3. Structural, optical and thermo electrical properties of nanostructured vacuum evaporated CdS thin films vol.10, pp.1, 2014, https://doi.org/10.1007/s13391-013-3142-y
  4. Structural and optical properties of nanocrystalline Sb2S3 films deposited by chemical solution deposition vol.46, 2015, https://doi.org/10.1016/j.optmat.2015.04.066
  5. Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells vol.638, 2017, https://doi.org/10.1016/j.tsf.2017.07.048
  6. Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition vol.13, pp.4, 2012, https://doi.org/10.4313/TEEM.2012.13.4.196
  7. Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films vol.12, pp.4, 2011, https://doi.org/10.4313/TEEM.2011.12.4.164
  8. The role of Cl in the chemical bath on the properties of CdS thin films vol.535, 2013, https://doi.org/10.1016/j.tsf.2012.11.107
  9. Synthesis of Water-Soluble Antimony Sulfide Quantum Dots and Their Photoelectric Properties vol.13, pp.1, 2018, https://doi.org/10.1186/s11671-017-2421-1
  10. Redshift in Absorption Edge of Cd$_{\bm{{1-x}}}$Co $_{\bm{{x}}}$S Nanofilms vol.13, pp.2, 2014, https://doi.org/10.1109/TNANO.2014.2303200
  11. Performance and stability of solution-based cadmium sulfide thin film transistors: Role of CdS cluster size and film composition vol.101, pp.26, 2012, https://doi.org/10.1063/1.4773184