• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.033 seconds

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell (무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가)

  • Han, Won-Kyu;Ju, Jeong-Woon;Hwang, Gil-Ho;Seo, Hyun-Seok;Shin, Jung-Chul;Jun, Jae-Ho;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성)

  • 최장현;이상래
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition (펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅)

  • Choi, Bong Geun;Kim, So Yeon;Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.167-172
    • /
    • 2013
  • Titanium dioxides nanoparticles coated aluminum oxide powders were fabricated by pulsed laser deposition (PLD) with Nd : YAG laser at 266 nm. The Pulse laser energy is 100 mJ/pulse. During the irradiation of the focused laser on the $TiO_2$ target, Ar gas is supplied into the chamber. The gas pressure is varied in a range of $1{\times}10^{-2}$ to 100 Pa. Titanium dioxides nanoparticles deposited aluminum oxide powders were characterized by using energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), in order to understand the effect of Ar background gas on surface morphology and properties of the powders. The coated $TiO_2$ nanoparticles had nanosized spherical shape and the crystallite sizes of 10~30 nm. The morphology of coated $TiO_2$ nanoparticles is not affected by gas pressure. However, the particle size and crystallinity slightly increased with the increase of gas pressure. According to this technique, the size and crystallinity of nanoparticles can be easily controlled by controlling pressure during the laser irradiation.

Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms ($UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과)

  • 김중곤;신용국;이영상;김용호;김시욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The killing effects of two types(one-phase reactor and two-phase reactor) of UV-TiO$_2$photocatalytic system on the microorganisms have been studied. The UV-lamp which emits maximum 39 watts at 254 nm was prepared in these system. Three types of $TiO_2$ coating method were adopted. One type is thin film coated form on the quartz tube in the reactor and another one is surface rough coated form on the glass bead. The other one is $TiO_2$-mixed alginate bead form. UV irradiation was carried out for 1 min. In case of one phase reactor, the bactericidal efficiencies of E. coli by $TiO_2$-coated quartz tube and $TiO_2$-coated glass bead were 63.2% and 89.9%, respectively. In the air-bubbling system, the bactericidal efficiency was 95%, however, the efficiency decreased to 90.6% in the non-bubbling system. In the $TiO_2$-mixed alginate bead system, bactericidal efficiency was 86%. When $H_2O$$_2$ was treated (10, 15, 20, and 25 mg/ι) to the $TiO_2$-coated glass bead reactor, bactericidal efficiency significantly increased according to the concentration of $H_2$$O_2$. Two phase reactor showed more elevated efficiency. E. coli was more sensitive to the reaction than S. cerevisiae.

  • PDF

Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel (터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구)

  • Chu, Ickchan;Nam, Seunghyuk;Baek, Seungin;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.51-57
    • /
    • 2011
  • The calcium hydroxide($Ca(OH)_{2}$) which is flowed into the deteriorated tunnel by groundwater is reacted with carbon dioxide($CO_{2}$) and the vehicle's exhaust gas ($SO_{3}$). So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. Most by-products are composed of $CaCO_{3}$ with calcite from a chemical experiment. The purpose of this study is mainly focused on comparison of attachment on each material of drainage pipe (teflon-coated steel pipe, silicon-Oil coated pipe, acrylic pipe and PVC pipe). The test was progressed to disembogue the CaO aqueous solution and tunnel outflow into each of the pipes. The experimental results show that the most produced scale pipe is PVC material and the followings are Acrylic pipe, Silicon-Oil coating pipe and Teflon coating pipe. But the long-term test results showed that teflon-coated steel pipe had a problem with durability because soil which was contained in the tunnel outflow occurred detachment of coating and corrosion of the steel pipe.

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami;Maryam Pourhajibagher;lireza Badiei;Reza Masaeli;Behrad Tanbakuchi
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.16-25
    • /
    • 2023
  • Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

Degradation Efficiencies of Gas Phase Hydrocarbons for Photocatalysis Reactor With TiO2Thin Film (TiO2광촉매 반응기의 기체상 탄화수소의 분해효율)

  • 이진홍;박종숙;김진석;오상협;김동현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Titania photocatalytic oxidation reactors were studied to investigate degradation efficiencies of hydrocarbons. In general, it is well known phenomena that thin layered titania oxidizes most of hydrocarbons to carbon dioxide and water under UV light. In this study, degradation efficiencies were measured due to changes in reactor structures, UV sources, the number of titania coatings, and various hydrocarbon chemicals. It was proven that gas degradation efficiencies are related to such factors as UV transmittance of coating substance, collision area of surface, and gas flow rate. For packing type annular reactor, about 98% degradation efficiency was achieved for achieved for propylene of 500 ppm level at a flow rate of 100 ml/min. Several gases were also tested for double-coated titania thin film under the condition of continuous flow of 100 ml/min and 365 nm UV source. It was shown that degradation efficiencies were decreasing in the order: $C_3$ $H_{6}$, n-C$_4$ $H_{10}$, $C_2$ $H_4$, $C_2$ $H_2$, $C_{6}$ $H_{6}$ and $C_2$ $H_{6}$./. 6/./.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.