DOI QR코드

DOI QR Code

Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study

  • Rashin Bahrami (Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences) ;
  • Maryam Pourhajibagher (Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences) ;
  • lireza Badiei (School of Chemistry, College of Science, University of Tehran) ;
  • Reza Masaeli (Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences) ;
  • Behrad Tanbakuchi (Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences)
  • Received : 2022.04.12
  • Accepted : 2022.09.09
  • Published : 2023.01.25

Abstract

Objective: We aimed to evaluate the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles (nano-Ag and nano-ZnO, respectively). Methods: In this experimental study, 30 orthodontic bands were divided into three groups (n = 10 each): control (uncoated band), Ag (silver-coated band), and ZnO (zinc oxide-coated band). The electrostatic spray-assisted vapor deposition method was used to coat orthodontic bands with nano-Ag or nano-ZnO. The biofilm inhibition test was used to assess the antimicrobial effectiveness of nano-Ag and nano-ZnO against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Biocompatibility tests were conducted using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The groups were compared using oneway analysis of variance with a post-hoc test. Results: The Ag group showed a significantly higher reduction in the number of L. acidophilus, C. albicans, and S. mutans colonies than the ZnO group (p = 0.015, 0.003, and 0.005, respectively). Compared with the control group, the Ag group showed a 2-log10 reduction in all the microorganisms' replication ability, but only S. mutants showed a 2-log10 reduction in replication ability in the ZnO group. The lowest mean cell viability was observed in the Ag group, but the difference between the groups was insignificant (p > 0.05). Conclusions: Coating orthodontic bands with nano-ZnO or nano-Ag induced antimicrobial effects against oral pathogens. Among the nanoparticles, nano-Ag showed the best antimicrobial activity and nano-ZnO showed the highest biocompatibility.

Keywords

Acknowledgement

This study was part of a specialty in orthodontics thesis supported by Tehran University of Medical Sciences (Grant no. 9811114002). This study was also funded and supported by Tehran University of Medical Sciences (Grant no. 1400-2-133-54440).

References

  1. Antonio-Zancajo L, Montero J, Albaladejo A, OteoCalatayud MD, Alvarado-Lorenzo A. Pain and oralhealth-related quality of life in orthodontic patients during initial therapy with conventional, low-friction, and lingual brackets and aligners (Invisalign): a prospective clinical study. J Clin Med 2020;9:2088.
  2. Erbe C, Hornikel S, Schmidtmann I, Wehrbein H. Quantity and distribution of plaque in orthodontic patients treated with molar bands. J Orofac Orthop 2011;72:13-20. https://doi.org/10.1007/s00056-010-0001-4
  3. Anhoury P, Nathanson D, Hughes CV, Socransky S, Feres M, Chou LL. Microbial profile on metallic and ceramic bracket materials. Angle Orthod 2002;72:338-43.
  4. Manuelli M, Marcolina M, Nardi N, Bertossi D, De Santis D, Ricciardi G, et al. Oral mucosal complications in orthodontic treatment. Minerva Stomatol 2019;68:84-8. https://doi.org/10.23736/S0026-4970.18.04127-4
  5. Bishara SE, Ostby AW. White spot lesions: formation, prevention, and treatment. Semin Orthod 2008;14:174-82. https://doi.org/10.1053/j.sodo.2008.03.002
  6. Walsh LJ, Healey DL. Prevention and caries risk management in teenage and orthodontic patients. Aust Dent J 2019;64 Suppl 1:S37-45. https://doi.org/10.1111/adj.12671
  7. Lacerda Rangel Esper MA, Junqueira JC, Uchoa AF, Bresciani E, Nara de Souza Rastelli A, Navarro RS, et al. Photodynamic inactivation of planktonic cultures and Streptococcus mutans biofilms for prevention of white spot lesions during orthodontic treatment: an in vitro investigation. Am J Orthod Dentofacial Orthop 2019;155:243-53. Erratum in: Am J Orthod Dentofacial Orthop 2019;155:458.
  8. Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 2008;29:4157-63. https://doi.org/10.1016/j.biomaterials.2008.07.003
  9. Lim BS, Lee SJ, Lee JW, Ahn SJ. Quantitative analysis of adhesion of cariogenic streptococci to orthodontic raw materials. Am J Orthod Dentofacial Orthop 2008;133:882-8. https://doi.org/10.1016/j.ajodo.2006.07.027
  10. Shah AG, Shetty PC, Ramachandra CS, Bhat NS, Laxmikanth SM. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus. Angle Orthod 2011;81:1028-35. https://doi.org/10.2319/021111-101.1
  11. De Stefani A, Bruno G, Preo G, Gracco A. Application of nanotechnology in orthodontic materials: a state-of-the-art review. Dent J (Basel) 2020;8:126.
  12. Doudi M, Naghsh N, Heiedarpour A. The effect of silver nanoparticles on gram-negative bacilli resistant to extended-spectrum β-lactamase enzymes. Med Lab J 2011;5:44-51.
  13. Lloyd JR. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 2003;27:411-25. https://doi.org/10.1016/S0168-6445(03)00044-5
  14. Burgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, et al. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol 2009;54:595-601. https://doi.org/10.1016/j.archoralbio.2009.03.004
  15. Spacciapoli P, Buxton D, Rothstein D, Friden P. Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodontal Res 2001;36:108-13. https://doi.org/10.1034/j.1600-0765.2001.360207.x
  16. Ohira T, Yamamoto O, Iida Y, Nakagawa ZE. Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Mater Med 2008;19:1407-12. https://doi.org/10.1007/s10856-007-3246-8
  17. Afonso Camargo SE, Mohiuddeen AS, Fares C, Partain JL, Carey PH 4th, Ren F, et al. Anti-bacterial properties and biocompatibility of novel SiC coating for dental ceramic. J Funct Biomater 2020;11:33.
  18. Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. J Hyg (Lond) 1938;38:732-49. https://doi.org/10.1017/S002217240001158X
  19. International Organization for Standardization (ISO). ISO 10993-5:2009. Biological evaluation of medical devices- part 5: tests for in vitro cytotoxicity. Geneva: ISO Copyright Office; 2009.
  20. Tavassoli-Hojjati S, Haghgoo R, Mehran M, Niktash A. Evaluation of the effect of fluoride gel and varnish on the demineralization resistance of enamel: an in vitro. J Iran Dent Assoc 2012;24:28-34.
  21. Farhadian N, Usefi Mashoof R, Khanizadeh S, Ghaderi E, Farhadian M, Miresmaeili A. Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofacial Orthop 2016;149:155-60. Erratum in: Am J Orthod Dentofacial Orthop 2017;151:11.
  22. Arash V, Keikhaee F, Rabiee SM, Rajabnia R, Khafri S, Tavanafar S. Evaluation of antibacterial effects of silver-coated stainless steel orthodontic brackets. J Dent (Tehran) 2016;13:49-54.
  23. Ghorbanzadeh R, Pourakbari B, Bahador A. Effects of baseplates of orthodontic appliances with in situ generated silver nanoparticles on cariogenic bacteria: a randomized, double-blind cross-over clinical trial. J Contemp Dent Pract 2015;16:291-8. https://doi.org/10.5005/jp-journals-10024-1678
  24. Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 2013;35:676-9. https://doi.org/10.1093/ejo/cjs073
  25. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 1983;10:373-81. https://doi.org/10.1111/j.1365-2842.1983.tb00133.x
  26. Bulut H, Turkun M, Turkun LS, Isiksal E. Evaluation of the shear bond strength of 3 curing bracket bonding systems combined with an antibacterial adhesive. Am J Orthod Dentofacial Orthop 2007;132:77-83. https://doi.org/10.1016/j.ajodo.2005.06.040
  27. Kachoei M, Divband B, Rahbar M, Esmaeilzadeh M, Ghanizadeh M, Alam M. A novel developed bioactive composite resin containing silver/zinc oxide (Ag/ZnO) nanoparticles as an antimicrobial material against Streptococcus mutans, Lactobacillus, and Candida albicans. Evid Based Complement Alternat Med 2021;2021:4743411.
  28. Garmasheva I, Kovalenko N, Voychuk S, Ostapchuk A, Livins'ka O, Oleschenko L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. Bioimpacts 2016;6:219-23. https://doi.org/10.15171/bi.2016.29
  29. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009;145:83-96. https://doi.org/10.1016/j.cis.2008.09.002
  30. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008;176:1-12. https://doi.org/10.1016/j.toxlet.2007.10.004
  31. Hernandez-Sierra JF, Ruiz F, Pena DC, MartinezGutierrez F, Martinez AE, Guillen Ade J, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4:237-40. https://doi.org/10.1016/j.nano.2008.04.005
  32. Cieplik F, Aparicio C, Kreth J, Schmalz G. Development of standard protocols for biofilm-biomaterial interface testing. JADA Found Sci 2022;1:100008.
  33. Kasraei S, Sami L, Hendi S, Alikhani MY, RezaeiSoufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 2014;39:109-14. https://doi.org/10.5395/rde.2014.39.2.109
  34. Hailan SY, Al-Khatieeb MM. Antimicrobial efficacy of silver, zinc oxide, and titanium dioxide nanoparticles incorporated in orthodontic bonding agent. J Baghdad Coll Dent 2019;31:10-6. https://doi.org/10.26477/jbcd.v31i3.2693
  35. Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dent Res J (Isfahan) 2015;12:44-9. https://doi.org/10.4103/1735-3327.150330
  36. Prabha RD, Kandasamy R, Sivaraman US, Nandkumar MA, Nair PD. Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry. Indian J Med Res 2016;144:580-6.
  37. Halimi SU, Bakar NFA, Ismail SN, Hashib SA. Electrospray deposition of titanium dioxide (TiO2) nanoparticles. AIP Conf Proc 2014;1586:57.
  38. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 2013;87:1181-200. https://doi.org/10.1007/s00204-013-1079-4
  39. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009;23:1076-84. https://doi.org/10.1016/j.tiv.2009.06.001
  40. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013;135:1438-44. https://doi.org/10.1021/ja309812z
  41. Shahi S, Ozcan M, Maleki Dizaj S, Sharifi S, Al-Haj Husain N, Eftekhari A, et al. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods 2019;29:368-77. https://doi.org/10.1080/15376516.2019.1566424