DOI QR코드

DOI QR Code

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash

플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동

  • Lee, Won-Jun (Department of Materials Science and Engineering, Korea University) ;
  • Jang, Byung-Koog (High Temperature Materials Unit, National Institute for Materials Science) ;
  • Lim, Dae-Soon (Department of Materials Science and Engineering, Korea University) ;
  • Oh, Yoon-Suk (Department of Engineering Ceramic Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Kim, Seong-Won (Department of Engineering Ceramic Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Kim, Hyung-Tae (Department of Engineering Ceramic Center, Korea Institute of Ceramic & Engineering Technology) ;
  • Araki, Hiroshi (High Temperature Materials Unit, National Institute for Materials Science) ;
  • Murakami, Hideyuki (High Temperature Materials Unit, National Institute for Materials Science) ;
  • Kuroda, Seiji (High Temperature Materials Unit, National Institute for Materials Science)
  • 이원준 (고려대학교 신소재공학과) ;
  • 장병국 (물질재료연구기구 고온재료유니트) ;
  • 임대순 (고려대학교 신소재공학과) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • ;
  • ;
  • Received : 2013.09.10
  • Accepted : 2013.10.09
  • Published : 2013.11.30

Abstract

The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Keywords

References

  1. N. P. Padture, M. Gell, and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications," Science, 296 [5566] 280-84 (2002). https://doi.org/10.1126/science.1068609
  2. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  3. A. G. Evans, D. R. Clarke, and C. G. Levi, "The Influence of Oxides on the Performance of Advanced Gas Turbines," J. Eur. Ceram. Soc., 28 [7] 1405-19 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.023
  4. B. K. Jang and H. Matsubara, "Microstructure of Nanoporous Yttria-Stabilized Zirconia Films Fabricated by EB-PVD," J. Eur. Ceram. Soc., 26 [9] 1585-90 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.248
  5. B. K. Jang, Y. Sakka, N. Yamaguchi, H. Matsubara, and H. T. Kim, "Thermal Conductivity of EB-PVD $ZrO_2-4$ mol% $Y_2O_3$ Films Using the Laser Flash Method," J. Alloys Compd., 509 [3] 1045-49 (2011). https://doi.org/10.1016/j.jallcom.2010.08.162
  6. J. Kim, M. G. Dunn, A. J. Baran, D. P. Wade, and E. L. Tremba, "Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines," ASME J. Eng. Gas Turbines Power., 115 [3] 641 (1993). https://doi.org/10.1115/1.2906754
  7. D. J. de Wet, R. Taylor, and F. H. Stott, "Corrosion Mechanisms of $ZrO_2-Y_2O_3$ Thermal Barrier Coatings in the Presence of Molten Middle-East Sand,'' J. Phys. IV France, 3 [C9] 655-63 (1993).
  8. F. H. Stott, D. J. de Wet, and R. Taylor, "Degradation of Thermal-Barrier Coatings at Very High Temperatures," MRS Bull., 19 [10] 46-9 (1994).
  9. J. L. Smialek, F. A. Archer, and R. G. Garlick, "Turbine Airfoil Degradation in the Persian Gulf War," J. Min. Metal. Mater. Soc., 46 [12] 39-41 (1994).
  10. S. Kramer, J. Yang, C. G. Levi, and C. A. Johnson, "Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-$Al_2O_3-SiO_2(CMAS)$ Deposits," J. Am. Ceram. Soc., 89 [10] 3167-75 (2006). https://doi.org/10.1111/j.1551-2916.2006.01209.x
  11. A. Aygun, A. L. Vasiliev, N. P. Padture, and X. Ma, "Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits," Acta Mater., 55 [20] 6734-45 (2007). https://doi.org/10.1016/j.actamat.2007.08.028
  12. J. M. Drexler, K. Shinoda, A. L. Ortiz, D. Li, A. L. Vasiliev, A. D. Gledhill, S. Sampath, and N. P. Padture, "Air Plasma Sprayed Thermal Barrier Coatings that are Resistant to High Temperature Attack by Glassy Deposits," Acta Mater., 58 [20] 6835-44 (2010). https://doi.org/10.1016/j.actamat.2010.09.013
  13. S. Kramer, J. Yang, and C. G. Levi, "Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts," J. Am. Ceram. Soc., 91 [2] 576-83 (2008). https://doi.org/10.1111/j.1551-2916.2007.02175.x
  14. R. Srinivasan, R. J. De Angelis, G. Ice, and B. H Davis, "Identification of Tetragonal and Cubic Structures of Zirconia Using Synchrotron X-Radiation Source," J. Mater Res., 6 [6] 1287-92 (1991). https://doi.org/10.1557/JMR.1991.1287
  15. F. Sigmundsson, S. Hreinsdottir, A. Hooper, T. Arnadottir, R. Pedersen, M. J. Roberts, N. Oskarsson, A. Auriac, J. Decriem, P. Einarsson, H. Geirsson, M. Hensch, B. G. Ofeigsson, E. Sturkell, H. Sveinbjornsson, and K. F. Feigl, "Intrusion Triggering of the 2010 Eyafallajokull Explosive Eruption," Nature, 468 [7322] 426 (2010). https://doi.org/10.1038/nature09558
  16. C. S. Ramachandran, V. Balasubramanian, and P. V. Ananthapadmanabhan, "Thermal Cycling Behaviour of Plasma Sprayed Lanthanum Zirconate Based Coatings under Concurrent Infiltration by a Molten Glass Concoction," Ceram. Int., 39 [2] 1413-31 (2013). https://doi.org/10.1016/j.ceramint.2012.07.084
  17. Schmincke and Hans-Ulrich, Volcanism, pp. 1-324, Springer, Berlin, 2003.
  18. Y. Kanno, "Discussion of the Double Oxides Formation in the Systems of $ZrO_2-SiO_2,\;ZrO_2-TiO_2\;and\;TiO_2-SiO_2$," J. Mater. Sci. Lett., 9 [7] 765-67 (1990). https://doi.org/10.1007/BF00720150
  19. D. R. Spearing and J. Y. Huang, "Zircon Synthesis Via Sintering of Milled $SiO_2\;and\;ZrO_2$," J. Am. Ceram. Soc., 81 [7] 1964-66 (1998).
  20. P. Mechnich, W. Braue, and U. Schulz, "High-Temperature Corrosion of EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings with an Artificial Volcanic Ash Overlay," J. Am. Ceram. Soc., 94 [3] 925-31 (2011). https://doi.org/10.1111/j.1551-2916.2010.04166.x

Cited by

  1. Degradation of EB-PVD ZrO2–4 mol%Y2O3 thermal barrier coatings by volcanic ash deposits vol.124, pp.9, 2016, https://doi.org/10.2109/jcersj2.16084
  2. System by Using Suspension Plasma Spray with Different Suspension Preparations vol.49, pp.6, 2016, https://doi.org/10.5695/JKISE.2016.49.6.595
  3. Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings vol.125, pp.4, 2017, https://doi.org/10.2109/jcersj2.16211
  4. 열차폐코팅용 GdO1.5-ZrO2계 희토류 지르코네이트 세라믹스의 상형성과 열물리 특성 vol.51, pp.6, 2014, https://doi.org/10.4191/kcers.2014.51.6.554
  5. 서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가 vol.51, pp.6, 2013, https://doi.org/10.4191/kcers.2014.51.6.598
  6. 서스펜션 플라즈마 용사로 제조된 란타눔/가돌리늄 지르코네이트 열차폐코팅의 구조와 열전도도 특성 vol.47, pp.6, 2014, https://doi.org/10.5695/jkise.2014.47.6.316