• Title/Summary/Keyword: Volcanic ash

Search Result 255, Processing Time 0.034 seconds

Effect of volcanic ash on cell growth and production of exopolymers

  • Kim, Ji-Mo;Park, Hong-Gil;Jeong, Dae-Il;Kim, Gwang;Kim, Sang-Ok;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.342-345
    • /
    • 2000
  • Effect of volcanic ash on cell growth of Aspergillus sp. and production of exopolymers by Agrobacterium sp. and Aureobasidium pullualns was investigated. The volcanic ash contained various mineral salts such as $SiO_2$, $Al_2O_3$, CaO, $K_2O$. Maximal cell growth of Aspergillus sp. was obtained when 0.3% volcanic ash was added to medium. Cell growth of Aspergillus sp. increased with higher concentration of volcanic ash in medium. Amount of cell growth with 0.3 % volcanic ash was 6.7 times higher than that without volcanic ash. Volcanic ash also stimulated production of exopolymer as well as cell growth. Production of curdlan with 0.1% volcanic ash was 12.40 g/l whereas that without volcanic ash was 9.15 g/l. Production of pullulan with volcanic ash was also higher than that without volcanic ash.

  • PDF

Strength and Water Purification Characteristics of Effective Microorganism-applied Volcanic Ash Block (유용미생물을 적용한 화산재 블록의 강도 및 수질정화 특성)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Choi, Joong-Dae;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • The aim of this study is to investigate strength and water purification characteristics of effective microorganism-applied volcanic ash block using flexural strength test and water quality analysis. The specimens were prepared with volcanic ash from Mt. Baekdusan and Mt. Hallasan, and cement as the ratios of 3.5:1, 4.0:1, 4.5:1, 5.0:1 with and without metakaolin. Flexural strength degraded with increasing of the amount of volcanic ash, and increased with addition of metakaolin as a binder. Based on these results, the optimal ratio for fabricating volcanic ash-cement mixture block is determined as 3.5:1 with metakaolin. Furthermore, from water quality analysis on contaminated water, removal ability of effective microorganism-applied volcanic ash-cement mixture block and caged volcanic ash block against T-N, T-P and SS was highly evaluated because of adsorption due to the large specific surface area of volcanic ash. Hence, volcanic ash-cement mixture block and caged volcanic ash block possibly contribute to water purification.

The Analysis of Volcanic-ash-deposition Damage using Spatial-information-based Volcanic Ash Damage Sector and Volcanic Ash Diffusion Simulation of Mt. Aso Volcano Eruption Scenario (공간정보 기반의 국내 화산재 피해 분야와 아소산 화산재 모의 확산 시나리오를 활용한 화산재 누적 피해 분석)

  • Baek, Won-Kyung;Kim, Miri;Han, Hyeon-gyeong;Jung, Hyung-Sup;Hwang, Eui-Hong;Lee, Haseong;Sun, Jongsun;Chang, Eun-Chul;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1221-1233
    • /
    • 2019
  • Estimating damage in each sector that can be caused by volcanic ash deposition, is very important to prepare the volcanic ash disaster. In this study, we showed predicted-Korean-volcanic-ash damage of each sector by using volcanic ash diffusion simulation and spatial-data-based volcanic ash damage sector in previous study. To this end, volcanic ash related base maps were generated by collecting and processing spatial information data. Finally, we showed Korean-volcanic-ash-deposition damages by sector using the collected Mt. Aso volcanic ash scenarios via overlapping analysis. As a result, volcanic-ash-related damages were expected to occur in the 162 and 134 districts for each Aso volcanic ash scenarios, since those districts exceeds the minimum volcanic ash damage criterion of 0.01 mm. Finally, we compared possible volcanic ash damages by sectors using collected and processed spatial data, after selecting administrative districts(Scenario 190805- Kangwon-do, Kyungsangbuk-do; Scenario 190811-Chuncheon-si, Hongcheon-si) with the largest amount of volcanic ash deposition.

Dyeing of Cotton Knitted Fabrics with Volcanic Ash(I) -The Compositions of Volcanic ash Deposited on the Cotton Knitted Fabrics- (화산재를 이용한 면 편성물의 염색(I) - 면 편성물에 부착된 화산재의 성분분석을 중심으로 -)

  • 유복선;신인수
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.8
    • /
    • pp.55-62
    • /
    • 2003
  • Natural dyes generally fan into two categories; organic dyes coming from animals and plants and inorganic dyes obtained from various minerals such as bengala, loess, ultramarine, prussian blue and etc. The main components of volcanic ash is clay mineral such as kaolinite, illite, quartz. Clay minerals Composing volcanic ash are kaolinite[$Al_4Si_4O_{10}{(OH)_{8}}$], illite[$K_{X}Al_2(Si,\;Al)_4O_{10}{(OH)}_2$], quartz[$SiO_2$], homblende[$Na_{0-1}\;Ca_2{(Mg,\;Fe,\;Al)}_5{(Si,\;Al)}_{8}O_{22}{(OH)}_2$]and etc. And the redish color mainly comes from iron oxide. In this paper, two different classes of dyeing process were tested; dyeing with volcanic ash only and cationic agent pre-treatment followed by dyeing with volcanic ash. The compositions of the volcanic ash powder and the volcanic ash deposited on the cotton knitted fabrics identified by energy dispersive spectrometer and XRD analysis. The major chemical components of volcanic ash deposited on the cotton knitted fabrics were confirmed to be the saicon oxide, iron oxide, and aluminum oxide and etc. According to the analysis by XRD and EDS-SEM, kaolinite, illite and quartz were also identified.

A Study on the Engineering Properties of Concrete Using High Volume of Volcanic Ash (화산재를 대량 사용한 콘크리트의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Lee Yeon Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, the use of volcanic-ash as a part of cement content in concrete is very common. But, it has been indicated that the compressive strength of concrete using large amount of volcanic-ash as a part of cement content in early age is low and carbonation velocity is fast. To solve those problems, High Volume Volcanic-Ash Concrete which contained large amount of volcanic-ash as a part of fine aggregate has been proposed. This is an experimential study to compare and analyze the properties of High Volumn Volcanic-Ash Concrete according to the replacement method and ratio of volcanic-ash. For this purpose, the mix proportion of concrete according to the replacement method(PL, C10, C150, A10, A100, A150) And then slump, setting time, bleeding, compressive strength, tensile strength and carbornation test were performed. According to test results, it was found that the compressive strength of the concrete using the volcanic-ash as a part of fine aggregate(A) was higher than that of the concrete using the volcanic-ash as a part of cement content(C). And, the compressive strength of the A concrete increased in early age as well as in long tern age as the volcanic-ash content increased.

  • PDF

Adsorption characteristics of lead ion in aqueous solution by volcanic ash (화산재에 의한 수용액의 납 이온 흡착특성)

  • Kim, Mi-Yeon;So, Myeong-Gi;Kim, Yeong-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Review about the Impacts from Volcanic Ash Fall (화산재 강하로부터의 영향 고찰)

  • Lee, Jeonghyun;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.73-86
    • /
    • 2020
  • The materials generating from volcanic eruption are volcanic gases, lavas and pyroclastic materials. Volcanic ash which has small-grain size (< 2 mm in diameter) can be moved easily and disperse widely, thus it may affect to communities across hundreds of square kilometers. The impacts from volcanic ash fall on people, structures, equipments, plants and livestock largely depend on ash thickness. According to increasing ash thickness, the intensity and area of damage may increase and affect significant damages not to human health but also to infrastructures. To reduce the impacts from volcanic ash fall, we have to establish the guidances about the nature and extent of the hazard and prepare the actions to increase abilities of communities to manage hazard. Although we don't have any experience caused by volcanic ash fall during and after volcanic eruption, we need to prepare the impacts of volcanic ash fall for future eruption in the areas surrounding Korea.

Assessment of Water Quality in Paldang-dam Surface Area through the Estimation of Volcanic Ash Toxic Components from Mt. Baekdu (백두산 화산재 유해성분 추정을 통한 팔당댐 유역 수질영향 평가)

  • Jee, Yong Keum;Lee, Gyeng Bin;Choi, Jung Ryel;Kim, Ji Tae
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.3
    • /
    • pp.237-245
    • /
    • 2014
  • Volcanic ash components of Mt. Baekdu were estimated to response the change of water quality environment affected by Mt. Baekdu volcanic ash ejected during eruption. Then the change of water concentrations according to the sedimentation of volcanic ash components were analysed. To estimate volcanic ash components of Mt. Baekdu, similar volcanos were selected through the comparison of main foreign volcano's magma type and the selected volcanic ash components supposed as Baekdu Mountain's. To analyse the change of water concentrations, the change of harmful components affected by volcanic ash sedimentation were analysed and the results were compared with domestic drinking water quality standard. As the result, Al, Cd, F, Fe, Pb, Mg, Cl and Sr could affect to water quality. Among those components, concentrations of Cd, F, Fe, Pb and Mg were estimated to exceed the drinking water quality standard.

Damage and Socio-Economic Impact of Volcanic Ash (화산재 양에 따른 피해와 사회 · 경제적 영향 분석)

  • Jiang, Zhuhua;Yu, Soonyoung;Yoon, Seong-Min;Choi, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.536-549
    • /
    • 2013
  • This study investigates the damages of and analyzes the social and economic impacts of volcanic ash eruptions in the world in order to estimate the potential volcanic ash impacts in South Korea when Mt. Baekdusan volcano erupts in the future. First, we build a comparison chart called "the impact of volcanic ash" on each economic and social sector by using major volcanic eruptions and we compare the damage with respect to volcanic ash thickness/weights. Secondly, we analyze the social and economic impact from volcanic ash. The economic damage is not likely to occur in South Korea, unless Mt. Baekdusan erupts in winter. However, the potential damage should not be overlooked because the volcanic ash may have a global impact around the world. If Mt. Baekdusan volcano erupts when the wind blows from north or northeast, the volcanic ash may then significantly affect South Korea of which economy is highly dependent on exports. Particularly when the volcanic ash moves to the densely populated metropolitan areas or agricultural areas, the damage can be significant. In preparation for the potential volcanic disasters, the volcanic ash forecast table suitable for South Korea should be prepared. In addition, building a Korean volcanic ash hazard map in advance will have a strategic significance.

3D Visualization Techniques for Volcanic Ash Dispersion Prediction Results (화산재 확산 예측결과의 삼차원 가시화 기법)

  • Youn, Jun Hee;Kim, Ho Woong;Kim, Sang Min;Kim, Tae Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • Korea has been known as volcanic disaster free area. However, recent surveying result shows that Baekdu mountain located in northernmost in the Korean peninsula is not a dormant volcano anymore. When Baekdu mountain is erupting, various damages due to the volcanic ash are expected in South Korea area. Especially, volcanic ash in the air may cause big aviation accident because it can hurt engine or gauges in the airplane. Therefore, it is a crucial issue to interrupt airplane navigation, whose route is overlapped with volcanic ash, after predicting three dimensional dispersion of volcanic ash. In this paper, we deals with 3D visualization techniques for volcanic ash dispersion prediction results. First, we introduce the data acquisition of the volcanic ash dispersion prediction. Dispersion prediction data is obtained from Fall3D model, which is volcanic ash dispersion simulation program. Next, three 3D visualization techniques for volcanic ash dispersion prediction are proposed. Firstly proposed technique is so called 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Second technique is a 'Cube in the Cube' which divide the cube in proportion to particle concentration and locates the small cubes. Last technique is 'Semitransparent Volcanic Ash Plane', which laminates the layer, whose grids present the particle concentration, and apply the semitransparent effect. Based on the proposed techniques, the user could 3D visualize the volcanic ash dispersion prediction results upon his own purposes.