• Title/Summary/Keyword: $I_{Ks}$ channel

Search Result 11, Processing Time 0.02 seconds

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Hyun-Sook;Shin, Ho-Chul;Lee, Jun-Hee;Kim, Hyoung-Chun;Rhim, Hyewhon;Hwang, Sung-Hee;Ha, Tal Soo;Kim, Hyun-Ji;Cho, Hana;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.656-663
    • /
    • 2014
  • Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.

Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K+ and KCNQ1 K+ channel currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.324-331
    • /
    • 2013
  • Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier $K^+$ channels ($I_{Ks}$) in the heart. This $K^+$ channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed that ginsenoside Rg3 activates human KCNQ1 $K^+$ channel currents through interactions with the K318 and V319 residues. However, little is known about the effects of ginsenoside metabolites on KCNQ1 $K^+$ alone or the KCNQ1 + KCNE1 $K^+$ ($I_{Ks}$) channels. In the present study, we examined the effect of protopanaxatriol (PPT) and compound K (CK) on KCNQ1 $K^+$ and $I_{Ks}$ channel activity expressed in Xenopus oocytes. PPT more strongly inhibited the $I_{Ks}$ channel currents than the currents of KCNQ1 $K^+$ alone in concentration- and voltage-dependent manners. The $IC_{50}$ values on $I_{Ks}$ and KCNQ1 alone currents for PPT were $5.18{\pm}0.13$ and $10.04{\pm}0.17{\mu}M$, respectively. PPT caused a leftward shift in the activation curve of $I_{Ks}$ channel activity, but minimally affected KCNQ1 alone. CK exhibited slight inhibition on $I_{Ks}$ and KCNQ1 alone $K^+$ channel currents. These results indicate that ginsenoside metabolites show limited effects on $I_{Ks}$ channel activity, depending on the structure of the ginsenoside metabolites.

Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization

  • Lee, Hyang-Ae;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Ki-Suk;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.119-127
    • /
    • 2016
  • Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of $Ca^{2+}$ channel current ($I_{Ca}$) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated $K^+$ channel currents ($I_{Kr}$, $I_{Ks}$) and voltage-gated $Na^+$ channel current ($I_{Na}$). The concentration-dependent inhibition of $Ca^{2+}$ channel currents ($I_{Ca}$) was examined in rat cardiomyocytes; these CCBs have similar potency on $I_{Ca}$ channel blocking with $IC_{50}$ (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both $APD_{50}$ and $APD_{90}$ already at $1{\mu}M$ whereas NIC and AML shortened $APD_{50}$ but not $APD_{90}$ up to $30{\mu}M$. According to ion channel studies, NIC and AML concentration-dependently inhibited $I_{Kr}$ and $I_{Ks}$ while ISR had only partial inhibitory effects (<50% at $30{\mu}M$). Inhibition of $I_{Na}$ was similarly observed in the three CCBs. Since the $I_{Kr}$ and $I_{Ks}$ mainly contribute to cardiac repolarization, their inhibition by NIC and AML could compensate for the AP shortening effects due to the block of $I_{Ca}$.

Development of 64-Channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호 획득을 위한 실시간 64-Ch 12-bit 1ks/s 하드웨어 개발)

  • Lee, Dong-Ha;Yoo, Jae-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.902-905
    • /
    • 2004
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUID) sensors for precision MCG signal acquisitions. Such system is composed of hundreds of sensors, requiring fast signal sampling and precise analog-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit 1ks/s, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 ms speed. The test result shows that the signal acquisition is done in 168 usuc which is much shorter than the required 1 ms period. This hardware will be extended to 256 channel data acquisition to be used for the diagnosis system.

  • PDF

Real-time 256-channel 12-bit 1ks/s Hardware for MCG Signal Acquisition (심자도 신호획득을 위한 실시간 256-채널 12-bit 1ks/s 하드웨어)

  • Yoo, Jae-Tack
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.643-649
    • /
    • 2005
  • A heart diagnosis system adopts Superconducting Quantum Interface Device(SQUD) sensors for precise MCG(MagnetoCardioGram) signal acquisitions. Such system needs to deal with hundreds of sensors, requiring fast signal sampling md precise analog-to-digital conversions(ADC). Our development of hardware board, processing 64-channel 12-bit in 1 ks/s speed, is built by using 8-channel ADC chips, 8-bit microprocessors, SPI interfaces, and specially designed parallel data transfers between microprocessors to meet the 1ks/s, i.e. 1 mili-second sampling interval. We extend the design into 256-channel hardware and analyze the speed .using the measured data from the 64-channel hardware. Since our design exploits full parallel processing, Assembly level coding, and NOP(No Operation) instruction for timing control, the design provides expandability and lowest system timing margin. Our result concludes that the data collection with 256-channel analog input signals can be done in 201.5us time-interval which is much shorter than the required 1 mili-second period.

256-channel 1ks/s MCG Signal Acquisition System (256-channel 1 ksamples/sec 심자도 신호획득 시스템)

  • Lee, Dong-Ha;Yoo, Jae-Tack;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.538-540
    • /
    • 2004
  • Electrical currents generated by human heart activities create magnetic fields represented by MCG(MagnetoCardioGram). Since an MCG signal acquisition system requires precise and stable operation, the system adopts hundreds of SQUID(Superconducting QUantum Interface Device) sensors for signal acquisition. Such a system requires fast real-time data acquisition in a required sampling interval, i.e., 1 mili-second for each sensor. This paper presents designed hardware to acquire data from 256-channel analog signal with 1 ksamples/sec speed, using 12-bit 8-channel ADC devices, SPI interfaces, parallel interfaces, 8-bit microprocessors, and a DSP processor. We implemented SPI interface between ADCs and a microprocessor, parallel interfaces between microprocessors. Our result concludes that the data collection can be done in $168{\mu}sec$ time-interval for 256 SQUID sensors, which can be interpreted to 6 ksamples/sec speed.

  • PDF

Correlation Analysis of KCNQ1 S140G Mutation Expression and Ventricular Fibrillation: Computer Simulation Study (KCNQ1 S140G 돌연변이 발현과 심실세동과의 상관관계 분석을 위한 컴퓨터 시뮬레이션 연구)

  • Jeong, Daun;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Background and aims: The KCNQ1 S140G mutation involved in $I_{ks}$ channel is a typical gene mutation affecting atrial fibrillation. However, despite the possibility that the S140G gene mutation may affect not only atrial but also ventricular action potential shape and ventricular responses, there is a lack of research on the relationship between this mutation and ventricular fibrillation. Therefore, in this study, we analyzed the correlation and the influence of the KCNQ1 S140G mutant gene on ventricular fibrillation through computer simulation studies. Method: This study simulated a 3-dimensional ventricular model of the wild type(WT) and the S140G mutant conditions. It was performed by dividing into normal sinus rhythm simulation and reentrant wave propagation simulation. For the sinus rhythm, a ventricular model with Purkinje fiber was used. For the reentrant propagation simulation, a ventricular model was used to confirm the occurrence of spiral wave using S1-S2 protocol. Results: The result showed that 41% shortening of action potential duration(APD) was observed due to augmented $I_{ks}$ current in S140G mutation group. The shortened APD contributed to reduce wavelength 39% in sinus rhythm simulation. The shortened wavelength in cardiac tissue allowed re-entrant circuits to form and increased the probability of sustaining ventricular fibrillation, while ventricular electrical propagation with normal wavelength(20.8 cm in wild type) are unlikely to initiate re-entry. Conclusion: In conclusion, KCNQ1 S140G mutation can reduce the threshold of the re-entrant wave substrate in ventricular cells, increasing the spatial vulnerability of tissue and the sensitivity of the fibrillation. That is, S140G mutation can induce ventricular fibrillation easily. It means that S140G mutant can increase the risk of arrhythmias such as cardiac arrest due to heart failure.

Response of $I_{Kr}$ and hERG Currents to the Antipsychotics Tiapride and Sulpiride

  • Jo, Su-Hyun;Lee, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • The human $ether$-$a$-$go$-$go$-related gene ($hERG$) channel is important for repolarization in human myocardium and is a common target for drugs that prolong the QT interval. We studied the effects of two antipsychotics, tiapride and sulpiride, on hERG channels expressed in $Xenopus$ oocytes and also on delayed rectifier $K^+$ currents in guinea pig cardiomyocytes. Neither the amplitude of the hERG outward currents measured at the end of the voltage pulse, nor the amplitude of hERG tail currents, showed any concentration-dependent changes with either tiapride or sulpiride ($3{\sim}300{\mu}M$). However, our findings did show that tiapride increased the potential for half-maximal activation ($V_{1/2}$) of HERG at $10{\sim}300{\mu}M$, whereas sulpiride increased the maximum conductance ($G_{max}$) at 3, 10 and $100{\mu}M$. In guinea pig ventricular myocytes, bath applications of 100 and $500{\mu}M$ tiapride at $36^{\circ}C$ blocked rapidly activating delayed rectifier $K^+$ current ($I_{Kr}$) by 40.3% and 70.0%, respectively. Also, sulpiride at 100 and $500{\mu}M$ blocked $I_{Kr}$ by 38.9% and 76.5%, respectively. However, neither tiapride nor sulpiride significantly affected the slowly activating delayed rectifier $K^+$ current ($I_{Ks}$) at the same concentrations. Our findings suggest that the concentrations of the antipsychotics required to evoke a 50% inhibition of IKr are well above the reported therapeutic plasma concentrations of free and total compound.

Wide Spectrum of Inhibitory Effects of Sertraline on Cardiac Ion Channels

  • Lee, Hyang-Ae;Kim, Ki-Suk;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.327-332
    • /
    • 2012
  • Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In these experiments, we have used the whole cell patch clamp technique to examine the effects of sertraline on the major cardiac ion channels expressed in HEK293 cells and the native voltage-gated $Ca^{2+}$ channels in rat ventricular myocytes. According to the results, sertraline is a potent blocker of cardiac $K^+$ channels, such as hERG, $I_{Ks}$ and $I_{K1}$. The rank order of inhibitory potency was hERG > $I_{K1}$ > $I_{Ks}$ with $IC_{50}$ values of 0.7, 10.5, and 15.2 ${\mu}M$, respectively. In addition to $K^+$ channels, sertraline also inhibited $I_{Na}$ and $I_{Ca}$, and the $IC_{50}$ values are 6.1 and 2.6 ${\mu}M$, respectively. Modification of these ion channels by sertraline could induce changes of the cardiac action potential duration and QT interval, and might result in cardiac arrhythmia.

Congenital LQT Syndromes: From Gene to Torsade de Pointes

  • Carmeliet, Edward
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Congenital Long QT syndrome (LQTs) is a relatively rare pathologic disorder but results frequently in sudden cardiac death. Of the six LQTs that have been clinically described, five have been worked out for their genetic and biophysical profile. Most are generated by mutations which cause a loss of function in two delayed $K^+$ currents, $i_{Ks}\;and\;i_{Kr}.$ One syndrome is generated by mutations in the $Na^+$ channel which causes essentially a gain of function in the channel. Clinically the syndromes are characterized by slowed repolarization of the cardiac ventricular action potential and the occurrence of typical arrhythmias with undulating peaks in the electrocardiogram, called Torsade de Pointes. Arrhythmias are initiated by early or delayed afterdepolarizations and continue as reentry. Triggers for cardiac events are exercise (swimming; LQT1), emotion (arousal; LQT2) and rest/sleep (LQT3). ${\beta}-blockers$ have a high efficacy in the treatment of LQT1 and LQT2. In LQT3 their use is questionable. The study of congenital LQTsyndromes is a remarkable example of how basic and clinical science converge and take profit of each other's contribution.