DOI QR코드

DOI QR Code

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites

  • Choi, Sun-Hye (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Lee, Byung-Hwan (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Kim, Hyeon-Joong (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Jung, Seok-Won (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Kim, Hyun-Sook (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center) ;
  • Shin, Ho-Chul (Department of Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Jun-Hee (Department of Physical Therapy, College of Health Science, Cheongju University) ;
  • Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Rhim, Hyewhon (Life Science Division, Korea Institute of Science and Technology) ;
  • Hwang, Sung-Hee (Department of Pharmaceutical Engineering College of Health Sciences Sangji University) ;
  • Ha, Tal Soo (Department of Biomedical Science, Daegu University) ;
  • Kim, Hyun-Ji (Department of Physiology and Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University) ;
  • Cho, Hana (Department of Physiology and Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University) ;
  • Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center)
  • Received : 2014.04.11
  • Accepted : 2014.08.11
  • Published : 2014.09.30

Abstract

Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.

Keywords

References

  1. Attele, A.S., Wu, J.A., and Yuan, C.S. (1999). Ginseng pharmacology:multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Bai, C.X., Sunami, A., Namiki, T., Sawanobori, T., and Furukawa, T. (2003). Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur. J. Pharmacol. 476, 35-44. https://doi.org/10.1016/S0014-2999(03)02174-5
  3. Bai, C.X., Takahashi, K., Masumiya, H., Sawanobori, T., and Furukawa, T. (2004). Nitric oxide-dependent modulation of the delayed rectifier $K^+$ current and the L-type $Ca^{2+}$ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. Br. J. Pharmacol. 142, 567-575. https://doi.org/10.1038/sj.bjp.0705814
  4. Bian, J., Cui, J., and McDonald, T.V. (2001). HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5- bisphosphate. Circ. Res. 89, 1168-1176. https://doi.org/10.1161/hh2401.101375
  5. Chen, C.X., and Zhang, H.Y. (2009). Protective effect of ginsenoside Re on isoproterenol-induced triggered ventricular arrhythmia in rabbits. Zhongguo Dang Dai Er Ke Za Zhi. 11, 384-388.
  6. Choi, S.H., Lee, J.H., Pyo, M.K., Lee, B.H., Shin, T.J., Hwang, S.H., Kim, B.R., Lee, S.M., Oh, J.W., Kim, H.C., et al. (2009). Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type $Ca^{2+}$ channel current inhibitions. Biol. Pharm. Bull. 32, 1224-1230. https://doi.org/10.1248/bpb.32.1224
  7. Choi, S.H., Shi, T.J., Lee, B.H., Chu, D.H., Choe, H., Pyo, M.K., Hwang, S.H., Kim, B.R., Lee, S.M., Lee, J.H., et al. (2010). Ginsenoside $Rg_3$ activates human KCNQ1 $K^+$ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit. Eur. J. Pharmacol. 637, 138-147. https://doi.org/10.1016/j.ejphar.2010.04.001
  8. Choi, S.H., Shin, T.J., Lee, B.H., Hwang, S.H., Lee, S.M., Lee, B.C., Park, C.S., Ha, T.S., and Nah, S.Y. (2011). Ginsenoside $Rg_3$ enhances large conductance $Ca^{2+}$-activated potassium channel currents: a role of Tyr360 residue. Mol. Cells 31,133-140. https://doi.org/10.1007/s10059-011-0017-7
  9. Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Lee, S.M., Kim, H.C., Rhim, H.W., and Nah, S.Y. (2013). Molecular mechanisms of large-conductance $Ca^{2+}$-activated potassium channel activation by ginseng gintonin. Evid. Based Complement Alternat. Med. 2013, 323709.
  10. Fujisawa, S., Ono, K., andIijima T. (2000). Time-dependent block of the slowly activating delayed rectifier $K^+$ current by chromanol 293B in guinea-pig ventricular cells. Br. J. Pharmacol. 129, 1007-1013. https://doi.org/10.1038/sj.bjp.0703126
  11. Furukawa, T., Bai, C.X., Kaihara, A., Ozaki, E., Kawano, T., Nakaya, Y., Awais, M., Sato. M., Umezawa, Y., and Kurokawa, J. (2006). Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol. Pharmacol. 70, 1916-1924. https://doi.org/10.1124/mol.106.028134
  12. Ghosh, S., Nunziato, D.A., and Pitt, G.S. (2006). KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ. Res. 98, 1048-1054. https://doi.org/10.1161/01.RES.0000218863.44140.f2
  13. Hille, B. (2001). Ion channels of excitable membranes. Sinauer Associates, Inc. Sunderland, MA, 814.
  14. Hwang, S.H., Shin, T.J., Choi, S.H., Cho, H.J., Lee, B.H., Pyo, M.K.,Lee, J.H., Kang, J., Kim, H.J., Park, C.W., et al. (2012). Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein coupled lysophosphatidic acid receptors with high affinity. Mol. Cells 33, 151-162. https://doi.org/10.1007/s10059-012-2216-z
  15. Kang, S.Y., Schini-Kerth, V.B., and Kim, N.D. (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci. 56, 1577-1586. https://doi.org/10.1016/0024-3205(95)00124-O
  16. Kim, N.D., Kang S.Y., Park, J.H., and Schini-Kerth, V.B. (1999). Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur. J. Pharmacol. 367, 41-49. https://doi.org/10.1016/S0014-2999(98)00898-X
  17. Kimura, Y., Schmitt, A., Fukushima, N., Ishii, I., Kimura, H., Nebreda, A.R., and Chun, J. (2001). Two vovelXenopus homologs of mammalian LPA1/EDG-2 function as lysophosphatidic acid receptors in Xenopus oocytes and mammalian cells. J. Biol. Chem. 276, 15208-15215. https://doi.org/10.1074/jbc.M011588200
  18. Lee, J.H., Jeong, S.M., Kim, J.H., Lee, B.H., Yoon, I.S., Lee, J.H., Choi, S.H., Kim, D.H., Rhim, H., Kim, S.S., et al. (2005). Characteristics of ginsenoside Rg3-mediated brain $Na^+$ current inhibition. Mol. Pharmacol. 68, 1114-1126. https://doi.org/10.1124/mol.105.015115
  19. Lee, J.H., Lee, B.H., Choi, S.H., Yoon, I.S., Pyo, M.K., Shin, T.J., Choi, W.S., Lim, Y., Rhim, H., Won, K.H., et al. (2008). Ginsenoside $Rg_3$ inhibits human 1.4 channel currents by interacting with the Lys531 residue. Mol. Pharmacol. 73, 619-626.
  20. Lee, J.H., Choi, S.H., Lee, B.H., Hwang, S.H., Kim, H.J., Rhee, J., Chung, C., andNah, S.Y. (2013). Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase $\alpha$. Neurosci. Lett. 26, 143-148.
  21. McCrossan, Z.A., and Abbott, G.W. (2004). The MinK-related peptides. Neuropharmacology 47, 787-821. https://doi.org/10.1016/j.neuropharm.2004.06.018
  22. Missan, S., Linsdell, P., and McDonald, T.F. (2006). Tyrosine kinase and phosphatase regulation of slow delayed-rectifier $K^+$ current in guinea-pig ventricular myocytes. J. Physiol. 1, 469-482.
  23. Nitta, J., Furukawa, T., Marumo, F., Sawanobori, T., and Hiraoka, M. (1994). Subcellular mechanism for $Ca^{2+}$-dependent enhancement of delayed rectifier $K^+$ current in isolated membrane patches of guinea pig ventricular myocytes. Circ. Res. 74, 96-104. https://doi.org/10.1161/01.RES.74.1.96
  24. Pyo, M.K., Choi, S.H., Hwang, S.H., Shin, T.J., Lee, B.H., Lee, S.M., Lim, Y.D., and Nah, S.Y. (2011). Novel glycoproteins from ginseng, J. Gingseng Res. 35, 92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  25. Robbins, J. (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther. 90, 1-19. https://doi.org/10.1016/S0163-7258(01)00116-4
  26. Salata, J.J., Jurkiewicz, N.K., Wang, J., Evans, B.E., Orme, H.T., and Sanguinetti, M.C. (1998). A novel benzodiazepine that activates cardiac slow delayed rectifier $K^+$ currents. Mol. Pharmacol. 54, 220-230. https://doi.org/10.1124/mol.54.1.220
  27. Sanguinetti, M.C. (1999). Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. N Y Acad. Sci. 868, 406-413. https://doi.org/10.1111/j.1749-6632.1999.tb11302.x
  28. Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L., and Keating, M.T. (1996). Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384, 80-83. https://doi.org/10.1038/384080a0
  29. Shamgar, L., Ma, L., Schmitt, N., Haitin, Y., Peretz, A., Wiener, R., Hirsch, J., Pongs, O., and Attali, B. (2006). Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ. Res. 98, 1055-1063. https://doi.org/10.1161/01.RES.0000218979.40770.69
  30. Tohse, N. (1990). Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells. Am. J. Physiol. 258, H1200-1207.
  31. Yus-Najera, E., Santana-Castro, I., and Villarroel, A. (2002). The identification and characterization of a noncontinuouscalmodulinbinding site in noninactivating voltage-dependent KCNQ potassium channels. J. Biol. Chem. 277, 28545-28553. https://doi.org/10.1074/jbc.M204130200

Cited by

  1. Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca2+-Calcineurin-Mediated Drp1 Signaling Pathways vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091825
  2. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension vol.159, 2016, https://doi.org/10.1016/j.pharmthera.2016.01.013
  3. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism vol.71, pp.5, 2015, https://doi.org/10.1107/S139900471500259X
  4. A brief method for preparation of gintonin-enriched fraction from ginseng vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.05.002
  5. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions vol.6, 2015, https://doi.org/10.3389/fphar.2015.00245
  6. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0215
  7. Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes vol.26, pp.23, 2017, https://doi.org/10.1089/scd.2017.0172
  8. The Crossroad of Ion Channels and Calmodulin in Disease vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020400
  9. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors vol.93, pp.None, 2014, https://doi.org/10.1016/j.bbi.2020.12.004
  10. Gintonin influences the morphology and motility of adult brain neurons via LPA receptors vol.45, pp.3, 2021, https://doi.org/10.1016/j.jgr.2020.06.003
  11. Modulating the Blood-Brain Barrier: A Comprehensive Review vol.13, pp.11, 2021, https://doi.org/10.3390/pharmaceutics13111980