References
- Ambs, S., Prueitt, R.L., Yi, M., Hudson, R.S., Howe, T.M., Petrocca, F., Wallace, T.A., Liu, C.G., Volinia, S., Calin, G.A., et al. (2008). Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 68, 6162-6170. https://doi.org/10.1158/0008-5472.CAN-08-0144
- Bian, H.B., Pan, X., Yang, J.S., Wang, Z.X., and De, W. (2011). Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J. Exp. Clin. Cancer Res. 30, 20. https://doi.org/10.1186/1756-9966-30-20
- Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944-13949. https://doi.org/10.1073/pnas.0506654102
- Deng, S., Calin, G.A., Croce, C.M., Coukos, G., and Zhang, L. (2008). Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7, 2643-2646. https://doi.org/10.4161/cc.7.17.6597
- Engels, B.M., and Hutvagner, G. (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163-6169. https://doi.org/10.1038/sj.onc.1209909
- Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861-874. https://doi.org/10.1038/nrg3074
- Garzon, R., Calin, G.A., and Croce, C.M. (2009). MicroRNAs in cancer. Annu. Rev. Med. 60, 167-179. https://doi.org/10.1146/annurev.med.59.053006.104707
- Giovannetti, E., Funel, N., Peters, G.J., Del Chiaro, M., Erozenci, L.A., Vasile, E., Leon, L.G., Pollina, L.E., Groen, A., Falcone, A., et al. (2010). MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70, 4528-4538. https://doi.org/10.1158/0008-5472.CAN-09-4467
- Guttilla, I.K., and White, B.A. (2009). Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem. 284, 23204-23216. https://doi.org/10.1074/jbc.M109.031427
- Inomata, M., Tagawa, H., Guo, Y.M., Kameoka, Y., Takahashi, N., and Sawada, K. (2009). MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113, 396-402.
- Iorio, M.V., Visone, R., Di Leva, G., Donati, V., Petrocca, F., Casalini, P., Taccioli, C., Volinia, S., Liu, C.G., Alder, H., et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Res. 67, 8699-8707. https://doi.org/10.1158/0008-5472.CAN-07-1936
- Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300. https://doi.org/10.3322/caac.20073
- Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635-647. https://doi.org/10.1016/j.cell.2005.01.014
- Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., Gunn, A., Nakagawa, Y., Shimano, H., Todorov, I., et al. (2009). TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881-889. https://doi.org/10.1038/ncb1897
- Ma, J., Dong, C., and Ji, C. (2010). MicroRNA and drug resistance. Cancer Gene Ther. 17, 523-531. https://doi.org/10.1038/cgt.2010.18
- Menghini, R., Casagrande, V., Cardellini, M., Martelli, E., Terrinoni, A., Amati, F., Vasa-Nicotera, M., Ippoliti, A., Novelli, G., Melino, G., et al. (2009). MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524-1532. https://doi.org/10.1161/CIRCULATIONAHA.109.864629
- Pasquinelli, A.E. (2012). MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271-282.
- Qi, L., Bart, J., Tan, L.P., Platteel, I., Sluis, T., Huitema, S., Harms, G., Fu, L., Hollema, H., and Berg, A. (2009). Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 9, 163. https://doi.org/10.1186/1471-2407-9-163
- Schepeler, T., Reinert, J.T., Ostenfeld, M.S., Christensen, L.L., Silahtaroglu, A.N., Dyrskjot, L., Wiuf, C., Sorensen, F.J., Kruhoffer, M., Laurberg, S., et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68, 6416-6424. https://doi.org/10.1158/0008-5472.CAN-07-6110
- Slack, F.J., and Weidhaas, J.B. (2008). MicroRNA in cancer prognosis. N Engl. J. Med. 359, 2720-2722. https://doi.org/10.1056/NEJMe0808667
- Sorrentino, A., Liu, C.G., Addario, A., Peschle, C., Scambia, G., and Ferlini, C. (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol. Oncol. 111, 478-486. https://doi.org/10.1016/j.ygyno.2008.08.017
- Su, J., Wang, Q., Liu, Y., and Zhong, M. (2014). miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Mol. Cell. Biochem. 392, 289-296. https://doi.org/10.1007/s11010-014-2039-x
- Tomari, Y., and Zamore, P.D. (2005). Perspective: machines for RNAi. Genes Dev. 19, 517-529. https://doi.org/10.1101/gad.1284105
- Wang, R., Wang, Z.X., Yang, J.S., Pan, X., De, W., and Chen, L.B. (2011). MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30, 2644-2658. https://doi.org/10.1038/onc.2010.642
- Yu, S., Lu, Z., Liu, C., Meng, Y., Ma, Y., Zhao, W., Liu, J., Yu, J., and Chen, J. (2010a). miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015-6025. https://doi.org/10.1158/0008-5472.CAN-09-4531
- Yu, Z.W., Zhong, L.P., Ji, T., Zhang, P., Chen, W.T., and Zhang, C.P. (2010b). MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol. 46, 317-322. https://doi.org/10.1016/j.oraloncology.2010.02.002
- Zhang, B., Pan, X., Cobb, G.P., and Anderson, T.A. (2007). microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1-12. https://doi.org/10.1016/j.ydbio.2006.08.028
- Zhang, T., Wang, Q., Zhao, D., Cui, Y., Cao, B., Guo, L., and Lu, S.H. (2011). The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin. Sci. 121, 437-447. https://doi.org/10.1042/CS20110207
- Zhang, H.S., Wu, T.C., Sang, W.W., and Ruan, Z. (2012). MiR-217 is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation by down-regulation of SIRT1. Biochim. Biophys. Acta 1823, 1017-1023. https://doi.org/10.1016/j.bbamcr.2012.02.014
- Zhao, W.G., Yu, S.N., Lu, Z.H., Ma, Y.H., Gu, Y.M., and Chen, J. (2010). The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726-1733. https://doi.org/10.1093/carcin/bgq160
Cited by
- Regulation of Complement-Dependent Cytotoxicity by MicroRNAs miR-200b, miR-200c, and miR-217 vol.196, pp.12, 2016, https://doi.org/10.4049/jimmunol.1502701
- New strategies for targeting drug combinations to overcome mutation-driven drug resistance vol.42, 2017, https://doi.org/10.1016/j.semcancer.2016.11.002
- Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis vol.38, pp.7, 2015, https://doi.org/10.14348/molcells.2015.0037
- miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs vol.39, pp.4, 2016, https://doi.org/10.14348/molcells.2016.2242
- TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway vol.10, pp.1, 2017, https://doi.org/10.1186/s13045-017-0422-2
- Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07739-y
- Integrated Analysis and MicroRNA Expression Profiling Identified Seven miRNAs Associated With Progression of Oral Squamous Cell Carcinoma vol.232, pp.8, 2017, https://doi.org/10.1002/jcp.25728
- Downregulation of ULK1 by microRNA-372 inhibits the survival of human pancreatic adenocarcinoma cells vol.108, pp.9, 2017, https://doi.org/10.1111/cas.13315
- Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract vol.289, pp.2, 2015, https://doi.org/10.1016/j.taap.2015.09.016
- Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs vol.2, pp.1, 2016, https://doi.org/10.1016/j.ncrna.2016.10.001
- miR-217 suppresses proliferation, migration, and invasion promoting apoptosis via targeting MTDH in hepatocellular carcinoma vol.37, pp.3, 2017, https://doi.org/10.3892/or.2017.5401
- The lncRNA MALAT1 acts as a competing endogenous RNA to regulate KRAS expression by sponging miR-217 in pancreatic ductal adenocarcinoma vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05274-4
- miR-217 regulates tumor growth and apoptosis by targeting the MAPK signaling pathway in colorectal cancer vol.12, pp.6, 2016, https://doi.org/10.3892/ol.2016.5249
- MicroRNA 217 inhibits cell proliferation and enhances chemosensitivity to doxorubicin in acute myeloid leukemia by targeting KRAS vol.13, pp.6, 2017, https://doi.org/10.3892/ol.2017.6076
- miR-98 targets ITGB3 to inhibit proliferation, migration, and invasion of non-small-cell lung cancer vol.8, pp.None, 2014, https://doi.org/10.2147/ott.s90998
- Activation of endoplasmic reticulum stress promotes autophagy and apoptosis and reverses chemoresistance of human small cell lung cancer cells by inhibiting the PI3K/AKT/mTOR signaling pathway vol.7, pp.47, 2014, https://doi.org/10.18632/oncotarget.12718
- Correlation between serum IL-1β and miR-144-3p as well as their prognostic values in LUAD and LUSC patients vol.7, pp.52, 2016, https://doi.org/10.18632/oncotarget.13042
- Endoplasmic reticulum stress promotes autophagy and apoptosis and reverses chemoresistance in human ovarian cancer cells vol.8, pp.30, 2017, https://doi.org/10.18632/oncotarget.17673
- MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas vol.8, pp.70, 2014, https://doi.org/10.18632/oncotarget.22975
- Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma vol.8, pp.32, 2014, https://doi.org/10.18632/oncotarget.18261
- Noncoding RNA in drug resistant sarcoma vol.8, pp.40, 2014, https://doi.org/10.18632/oncotarget.19029
- Polymorphisms of rs1347093 and rs1397529 are associated with lung cancer risk in northeast Chinese population vol.8, pp.55, 2017, https://doi.org/10.18632/oncotarget.22030
- lncRNA PCAT6 promotes non-small cell lung cancer cell proliferation, migration and invasion through regulating miR-330-5p vol.11, pp.None, 2018, https://doi.org/10.2147/ott.s178597
- Downregulated miR-217 expression predicts a poor outcome in acute myeloid leukemia vol.22, pp.1, 2018, https://doi.org/10.3233/cbm-170936
- MicroRNA-217 acts as a tumor suppressor and correlates with the chemoresistance of cervical carcinoma to cisplatin vol.12, pp.None, 2019, https://doi.org/10.2147/ott.s176618
- MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1 vol.12, pp.None, 2014, https://doi.org/10.2147/ott.s193097
- MiR-217 Inhibits Proliferation, Migration, and Invasion by Targeting SIRT1 in Osteosarcoma vol.34, pp.4, 2014, https://doi.org/10.1089/cbr.2017.2394
- Expression of selected miRNA, RARβ and FHIT genes in BALf of squamous cell lung cancer (squamous-cell carcinoma, SCC) patients: a pilot study vol.46, pp.6, 2014, https://doi.org/10.1007/s11033-019-05057-2
- Promotion of miR-221-5p on the Sensitivity of Gastric Cancer Cells to Cisplatin and Its Effects on Cell Proliferation and Apoptosis by Regulating DDR1 vol.13, pp.None, 2014, https://doi.org/10.2147/ott.s232953
- Long Non-Coding RNA Myosin Light Chain Kinase Antisense 1 Plays an Oncogenic Role in Gallbladder Carcinoma by Promoting Chemoresistance and Proliferation vol.13, pp.None, 2014, https://doi.org/10.2147/cmar.s323759
- MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1 vol.55, pp.1, 2021, https://doi.org/10.1080/10715762.2020.1852234
- Improving Gemcitabine Sensitivity in Pancreatic Cancer Cells by Restoring miRNA-217 Levels vol.11, pp.5, 2014, https://doi.org/10.3390/biom11050639
- Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms vol.144, pp.None, 2014, https://doi.org/10.1016/j.biopha.2021.112257