• 제목/요약/키워드: $H_2$ doping concentration

검색결과 117건 처리시간 0.027초

In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향 (Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

Current Spreading Layer와 에피 영역 도핑 농도에 따른 4H-SiC Vertical MOSFET 항복 전압 최적화 (Optimization of 4H-SiC Vertical MOSFET by Current Spreading Layer and Doping Level of Epilayer)

  • 안정준;문경숙;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.767-770
    • /
    • 2010
  • In this work, we investigated the static characteristics of 4H-SiC vertical metal-oxidesemiconductor field effect transistors (VMOSFETs) by adjusting the doping level of n-epilayer and the effect of a current spreading layer (CSL), which was inserted below the p-base region with highly doped n+ state ($5{\times}10^{17}cm^{-3}$). The structure of SiC VMOSFET was designed by using a 2-dimensional device simulator (ATLAS, Silvaco Inc.). By varying the n-epilayer doping concentration from $1{\times}10^{16}cm^{-3}$ to $1{\times}10^{17}cm^{-3}$, we investigated the static characteristics of SiC VMOSFETs such as blocking voltages and on-resistances. We found that CSL helps distribute the electron flow more uniformly, minimizing current crowding at the top of the drift region and reducing the drift layer resistance. For that reason, silicon carbide VMOSFET structures of highly intensified blocking voltages with good figures of merit can be achieved by adjusting CSL and doping level of n-epilayer.

Insertion of Carbon Interlayer Into GaN Epitaxial Layer

  • Yu, H.S.;Park, S.H.;Kim, M.H.;Moon, D.Y.;Nanishi, Y.;Yoon, E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.148-149
    • /
    • 2012
  • This paper reports doping of carbon atoms in GaN layer, which based on dimethylhydrazine (DMHy) and growth temperature. It is well known that dislocations can act as non-radiative recombination center in light emitting diode (LED). Recently, many researchers have tried to reduce the dislocation density by using various techniques such as lateral epitaxial overgrowth (LEO) [1] and patterned sapphire substrate (PSS) [2], and etc. However, LEO and PSS techniques require additional complicated steps to make masks or patterns on the substrate. Some reports also showed insertion of carbon doped layer may have good effect on crystal quality of GaN layer [3]. Here we report the growth of GaN epitaxial layer by inserting carbon doped GaN layer into GaN epitaxial layer. GaN:C layer growth was performed in metal-organic chemical vapor deposition (MOCVD) reactor, and DMHy was used as a carbon doping source. We elucidated the role of DMHy in various GaN:C growth temperature. When growth temperature of GaN decreases, the concentration of carbon increases. Hence, we also checked the carbon concentration with DMHy depending on growth temperature. Carbon concentration of conventional GaN is $1.15{\times}1016$. Carbon concentration can be achieved up to $4.68{\times}1,018$. GaN epilayer quality measured by XRD rocking curve get better with GaN:C layer insertion. FWHM of (002) was decreased from 245 arcsec to 234 arcsec and FWHM of (102) decreased from 338 arcsec to 302 arcsec. By comparing the quality of GaN:C layer inserted GaN with conventional GaN, we confirmed that GaN:C interlayer can block dislocations.

  • PDF

Phosphorus doping in silicon thin films using a two - zone diffusion method

  • Hwang, M.W.;Um, M.Y.;Kim, Y.H.;Lee, S.K.;Kim, H.J.;Park, W.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.73-77
    • /
    • 2000
  • Single crystal and polycrystalline Si thin films were doped with phosphorus by a 2-zone diffusion method to develop the low-resistivity polycrystalline Si electrode for a hemispherical grain. Solid phosphorus source was used in order to achieve uniformly and highly doped surface region of polycrystalline Si films having rough surface morphology. In case of 2-zone diffusion method, it is proved that the heavy doping near the surface area can be achieved even at a relatively low temperature. SIMS analysis revealed that phosphorus doping concentration in case of using solid P as a doping source was about 50 times as that of phosphine source at 750$^{\circ}C$. Also, ASR analysis revealed that the carrier concentration was about 50 times as that of phosphine. In order to evaluate the electrical characteristics of doped polycrystalline Si films for semiconductor devices, MOS capacitors were fabricated to measure capacitance of polycrystalline Si films. In ${\pm}$2 V measuring condition, Si films, doped with solid source, have 8% higher $C_{min}$ than that of unadditional doped Si films and 3% higher $C_{min}$ than that of Si films doped with $PH_3$ source. The leakage current of these films was a few fA/${\mu}m^2$. As a result, a 2-zone diffusion method is suggested as an effective method to achieve highly doped polycrystalline Si films even at low temperature.

  • PDF

Al 첨가가 $MgB_2$ 단결정의 비등방성에 미치는 영향에 대한 연구 (Effect of Al Doping on the Anisotropy of $MgB_2$ Single Crystals)

  • 강병원;이현숙;박민석;이성익
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.183-187
    • /
    • 2008
  • We have studied superconducting properties of $Mg_{1-x}Al_xB_2$ single crystals from reversible magnetization measurements. It was found that the upper critical fields $H_{c2}$ were decreased for both H // c and H // ab as Al is substituted for Mg. As a result, the large anisotropy of $H_{c2}$ observed in pure $MgB_2$, which is considered as one of the characteristics of two-gap superconductor, was decreased with Al doping. On the other hand, the irreversibility fields $H_{irr}$ were increased for x = 0.1 and were significantly decreased for x = 0.2. In contrary to the anisotropy of $H_{c2}$, the anisotropy of $H_{irr}$ was increased as Al concentration increases.

  • PDF

White Organic Light-Emitting Diodes Using a New DCM Derivative as an Efficient Orange-Red Doping Molecule

  • Lee, Jong-Don;Hwang, Do-Hoon;Cho, Nam-Sung;Lee, Sang-Kyu;Shim, Hong-Ku;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1416-1418
    • /
    • 2005
  • A new DCM derivative containing a phenothiazine moiety, 4-(dicyanomethylene)-2-t-butyl-6-(9-ethylphenothiazine-2- enyl)-4H-pyran (DCPTZ), has been synthesized as an orange-red fluorescent dye molecule for organic lightemitting diodes (OLEDs). EL devices with the structure of $ITO/PEDOT-PSS/{\alpha}-NPD/Alq_3:DCPTZ/Alq_3/LiF/Al$ have been fabricated with changing the doping concentration of the DCPTZ. Maximum EL spectra of the devices ranged from $580{\sim}620$ nm depending on the doping concentration of the dye molecule. An EL device with 0.5 % doping concentration showed CIE coordinate (0.51, 0.47) at luminance of 100 $cd/m^2$. White light-emitting devices with the structure of $ITO/PEDOT-PSS/{\alpha}-NPD/{\alpha}-NPD:DCPTZ/DPVBi/Alq_3/$ LiF/Al have been also fabricated. The thickness of blue light-emitting 1,4-bis(2,2- diphenylvinyl)benzene (DPVBi) layer was changed to obtain a white light-emission. A white light-emission from the device was observed when the thickness of the DPVBi layer became thicker than 10 nm.

  • PDF

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

n형 GaN의 doping 농도에 따르는 건식 식각 손상 (Doping-level dependent dry-etch damage of in n-type GaN)

  • 이지면
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.417-420
    • /
    • 2004
  • The electrical effects of dry-etch on n-type GaN by an inductively coupled $Cl_2/CH_4/H_2/Ar$ plasma were investigated as a function of ion energy, by means of ohmic and Schottky metallization method. The specific contact resistivity(${\rho}_c$) of ohmic contact was decreased, while the leakage current in Schottky diode was increased with increasing ion energy due to the preferential sputtering of nitrogen. At a higher rf power, an additional effect of damage was found on the etched sample, which was sensitive to the dopant concentration in terms of the ${\rho}_c$ of ohmic contact. This was attributed to the effects such as the formation of deep acceptor as well as the electron-enriched surface layer within the depletion layer. Furthermore, thermal annealing process enhanced the ohmic and Schottky property of heavily damaged surface.

  • PDF

불규칙 입자형상을 갖는 세리아 안정화 지르코니아 세라믹스의 제조 (Preparation of Ceria-stabilized Zirconia Ceramics with Irregular Grain Shape)

  • 강현희;이종국
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.372-379
    • /
    • 1999
  • Hihg-toughened ceria-stabilized tetragonal zirconia ceramics with irregular grain shape and undulated grain boundary was prepared by ceria doping. Irregularity of grain shapes was increased with the amount of doped ceria. But in case of the large amount of doped ceria grain boundary was migrated to the reverse direction of DIGM. Ceria-stabilized zirconia ceramics annealed at 1650$^{\circ}C$ for 2h after twice dippings into cerium nitrate solu-tion of 0.2M and sintering at 1500$^{\circ}C$ for 2h showed the highest grain boundary length with a value of 23.6$\mu\textrm{m}$ Ceria concentration difference between convex and concave sides in irregular grains was observed over 1 mol% but not observed in normal grains, Specimens with normal grain shape showed intergranular fracture mode whereas the specimens with irregular grain shape showed transgranular fracture mode.

  • PDF

Li 도핑된 NiO 합성 및 열전식 수소센서에의 적용 (Synthesis of Li-doped NiO and its application of thermoelectric gas sensor)

  • 한치환;한상도;김병권
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.136-141
    • /
    • 2005
  • Li-doped NiO was synthesized by molten salt method. $LiNO_3$-LiOH flux was used as a source for Li doping. $NiCl_2$ was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5:1 to 30:1 during the synthetic procedure and the Li doping amount of synthesized materials were found between 0.086-0.190 as a Li ion to Ni ion ratio. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies, however the lattice parameter decreased from 0.41769nm in pure NiO to 0.41271nm as Li doping amount increased. Hydrogen gas sensors were fabricated using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs $H_2$ concentration was checked up to 4% of $H_2$ in air (as higher concentrations above 4.65% are explosive in air) using Li doped NiO of Li ion/Ni ion=0.111 as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. There was minimum interference of other gases and hence $H_2$ gas can easily be detected.